Question

Using the bond enthalpies in the Average Bond Enthalpies table, determine the approximate enthalpy (in kJ)...

Using the bond enthalpies in the Average Bond Enthalpies table, determine the approximate enthalpy (in kJ) for each of the following reactions. (Assume the average bond enthalpy of the Cl–F bond is 254 kJ/mol.)

C) 2 CH3(C=O)H(g) + 5 O2(g) → 4 CO2(g) + 4 H2O(g)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Use the average bond enthalpies from the table to calculate the overall ΔH for this...
1. Use the average bond enthalpies from the table to calculate the overall ΔH for this reaction. Hint: Don't forget the C-C bond in CH3CH3. 2 CH3CH3 + 7 O2 → 4 CO2 + 6 H2O Selected Average Bond Energies Bond Avg. Bond Energy (kJ/mol) Bond Avg. Bond Energy (kJ/mol) C-H 415 H-H 436 C-C 350 H-O 464 C=C 611 H-N 389 C-O 360 N-O 222 C=O 736 N2 946 C=O in CO2 804 Cl2 243 C-N 305 Br2 193...
7. Use the bond enthalpies given below to estimate the heat of formation of n-decanoic acid...
7. Use the bond enthalpies given below to estimate the heat of formation of n-decanoic acid [CH3(CH2)8COOH(g)] from n-decanol [CH3(CH2)8CH2OH(g)] at 298.15 K: CH3(CH2)8CH2OH(g) + O2(g) --> CH3(CH2)8COOH(g) + H2O(g) D(O-H) = 464 kJ/mol, D(H-H) = 435 kJ/mol, D(O=O) = 494 kJ/mol, D(C=O) = 711 kJ/mol, D(C-H) = 414 kJ/mol
Calculate the average C—C bond strength in cyclopropane (in kJ/mol). Its combustion and the experimental enthalpy...
Calculate the average C—C bond strength in cyclopropane (in kJ/mol). Its combustion and the experimental enthalpy of reaction are: C3H6(g) + 4.5O2(g) → 3CO2(g) + 3H2O(g) ΔHºrxn = -1,957.7 kJ/mol Average bond strentgh (kj/mol): O - H = 463 C - H = 414 C - C = 347 O -- O = 498 (DOUBLE BOND) C -- O = 745 (DOUBLE BOND) C -- O (CO2 = 799) Since all reactants and products are in the gaseous state, bond...
Standard enthalpies of formation are obtained from thermodynamic tables as: C2H5OH(l) -227 kJ/mol CO2(g)    -390...
Standard enthalpies of formation are obtained from thermodynamic tables as: C2H5OH(l) -227 kJ/mol CO2(g)    -390 kJ/mol H2O(l)    -285 kJ/mol. Calculate the enthalpy change of the reaction C2H5OH(l) + 3 O2 ? 2 CO2(g) + 3 H2O Follow the procedures based on Hess's Law: First write down the reactions corresponding to the enthalpies of formation you have been given, reverse the equations if necessary, remembering to change the sign of ?Ho, then combine the equations to give the required...
Standard enthalpies of formation are obtained from thermodynamic tables as: C2H5OH(l) -224 kJ/mol CO2(g) -398 kJ/mol...
Standard enthalpies of formation are obtained from thermodynamic tables as: C2H5OH(l) -224 kJ/mol CO2(g) -398 kJ/mol H2O(l) -281 kJ/mol. Calculate the enthalpy change of the reaction C2H5OH(l) + 3 O2 ? 2 CO2(g) + 3 H2O Follow the procedures based on Hess's Law: First write down the reactions corresponding to the enthalpies of formation you have been given, reverse the equations if necessary, remembering to change the sign of ?Ho, then combine the equations to give the required process, and...
Use the following reaction enthalpies to determine the reaction enthalpy for 2 HCl(g) + F2(g) →...
Use the following reaction enthalpies to determine the reaction enthalpy for 2 HCl(g) + F2(g) → 2 HF(g) + Cl2(g). 4 HCl(g) + O2(g) → 2 H2O(l) + 2 Cl2(g) ΔHrxn = - 202.4 kJ/mol rxn 1/2 H2(g) + 1/2 F2(g) → HF(g) ΔHrxn = - 271.0 kJ/mol rxn H2(g) + 1/2 O2(g) → H2O(l) ΔHrxn = - 285.8 kJ/mol rxn
Given the following reactions and their enthalpies: ΔH(kJ/mol)−−−−−−−−−−− H2(g)⟶2H(g)   +436 O2(g)⟶2O(g)   +495 H2+1/2O2(g)⟶H2O(g)   −242 A. Devise...
Given the following reactions and their enthalpies: ΔH(kJ/mol)−−−−−−−−−−− H2(g)⟶2H(g)   +436 O2(g)⟶2O(g)   +495 H2+1/2O2(g)⟶H2O(g)   −242 A. Devise a way to calculate ΔH for the reaction H2O(g)⟶2H(g)+O(g) B. estimate the H-O bond energy
Using this information together with the standard enthalpies of formation of O2(g), CO2(g), and H2O(l) from...
Using this information together with the standard enthalpies of formation of O2(g), CO2(g), and H2O(l) from Appendix C, calculate the standard enthalpy of formation of acetone. Complete combustion of 1 mol of acetone (C3H6O) liberates 1790 kJ: C3H6O(l)+4O2(g)?3CO2(g)+3H2O(l)?H?=?1790kJ
1.) Using enthalpies of formation, calculate the standard change in enthalpy for the thermite reaction. The...
1.) Using enthalpies of formation, calculate the standard change in enthalpy for the thermite reaction. The enthalpy of formation of Fe3O4 is −1117 kJ/mol. 8 Al(s) + 3 Fe3O4(s) → 4 Al2O3(s) + 9 Fe(s) 2. a) Nitroglycerin is a powerful explosive, giving four different gases when detonated. 2 C3H5(NO3)3(l) → 3 N2(g) + 1/2 O2 (g) + 6 CO2(g) + 5 H2O(g) Given that the enthalpy of formation of nitroglycerin, ΔHf°, is −364 kJ/mol, calculate the energy (heat at...
The standard enthalpy change for the combustion of 1 mole of ethylene is -1303.1 kJ C2H4(g)...
The standard enthalpy change for the combustion of 1 mole of ethylene is -1303.1 kJ C2H4(g) + 3 O2(g) ----> 2 CO2(g) + 2 H2O Calculate the change of Hf for ethylene based on the following standard molar enthalpies of formation. molecules Change in Hf (kJ/mol) CO2 -393.5 H2O -241.8