Question

The change in entropy of the system and the universe if one mole of argon is...

The change in entropy of the system and the universe if one mole of argon is expanded isothermally and reversible at 300. K from 10.0 L to 20.0 L.

assuming the expansion is free. Calculate:

a) entropy of the system in J/K

b) entropy of the universe in J/K

Please explain each step.

Homework Answers

Answer #1

a) For reversible isothermal process with free expansion the change in entropy of the system is given by the formula.

N = 1 mole , V2 = 20 , V1 = 10

= 1 * 8.31447 * ln ( 20/10 ) = 8.31447 * ln(2) = 5.763 J/K.

b) Entropy of the Universe = entropy of the system + entropy of the surroundings

Entropy of the surroundings in a free expansion is 0 as there is no interaction between system and surroundings.

so Entropy of Universe = Entropy of the system

= 5.763 J/K.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Calculate the change in entropy for one mole of ideal gas which expands from an initial...
Calculate the change in entropy for one mole of ideal gas which expands from an initial volume of 2 L and initial temperature of 500 K to a final volume of 6 L under the following conditions. P(initial) refers to the pressure when T(initial)= 500K, V(initial)= 2 L. a) Irreversible expansion against a constant pressure of Pinitial/2 b) Irreversible expansion against a vacuum...a 'free expansion'. c) Adiabatic irreversible expansion against a constant pressure of Pfinal d) Adiabatic reversible expansion
One mole of an ideal gas is expanded isothermally and irreversibly from an initial volume of...
One mole of an ideal gas is expanded isothermally and irreversibly from an initial volume of 10.0 L to a final volume of 20.0 L at a pressure equal to the final pressure and a temperature of 500 K. Calculate the value of w. Calculate the values of q. Calculate the value of ΔS (system). Calculate the values of delta S (surroundings). Calculate the values of ΔS (total).
1.3 mole of an ideal gas at 300 K is expanded isothermally and reversibly from a...
1.3 mole of an ideal gas at 300 K is expanded isothermally and reversibly from a volume V to volume 4V. What is the change in entropy of the gas, in J/K?
In this problem, 1.10 mol of an ideal gas at 300 K undergoes a free adiabatic...
In this problem, 1.10 mol of an ideal gas at 300 K undergoes a free adiabatic expansion from V1 = 12.3 L to V2 = 22.2 L. It is then compressed isothermally and reversibly back to its original state. (a) What is the entropy change of the universe for the complete cycle? J/K   (b) How much work is lost in this cycle? J
One mole of ideal gas initially at 300 K is expanded from an initial pressure of...
One mole of ideal gas initially at 300 K is expanded from an initial pressure of 10 atm to a final pressure of 1 atm. Calculate ΔU, q, w, ΔH, and the final temperature T2 for this expansion carried out according to each of the following paths. The heat capacity of an ideal gas is cV=3R/2. 1. A reversible adiabatic expansion.
Calculate the entropy change when argon at 298 K and 1 bar in a container of...
Calculate the entropy change when argon at 298 K and 1 bar in a container of volume 0.5 l is heated to a temperature of 373 K and final volume of 1.0 l. Try to derive the complete expression algebraically before putting in numbers.
Consider an ideal gas of 0.2 mole of argon atoms with an initial volume of 0.8...
Consider an ideal gas of 0.2 mole of argon atoms with an initial volume of 0.8 liter (8*10-4 m 3 ) and a temperature of 300 K. a) The gas is thermally isolated and allowed to expand adiabatically to a final volume of 1 liter (10-3 m^3 ). How does the entropy of the gas change? Please provide your reasoning. b) Find the final temperature, ?? , of the gas after its adiabatic expansion. c) With the gas at the...
Calculate the entropy change of the UNIVERSE when 2.054 moles of N2O(g) react under standard conditions...
Calculate the entropy change of the UNIVERSE when 2.054 moles of N2O(g) react under standard conditions at 298.15 K. Consider the reaction N2O(g) + 3H2O(l)2NH3(g) + 2O2(g) for which H° = 683.1 kJ and S° = 365.6 J/K at 298.15 K. Is this reaction reactant or product favored under standard conditions? If the reaction is product favored, is it enthalpy favored, entropy favored, or favored by both enthalpy and entropy? If the reaction is reactant favored, choose 'reactant favored'.
For each case determine the change in entropy for the surroundings and the universe, when 1...
For each case determine the change in entropy for the surroundings and the universe, when 1 mole of a diatomic gas expands from its initial volume of 5 L and 31.5 ◦C to: CASE (a) a final volume of 25 L reversibly and isothermically. CASE (b) irreversibly and isothermically against an external pressure of 1 atm. CASE (c) a final volume of 25 L reversibly and adiabatically. Yes, it is zero, but you have to demonstrate it. CASE (d) irreversibly...
For each process below, determine the change in entropy of the system. Indicate whether the changes...
For each process below, determine the change in entropy of the system. Indicate whether the changes in the entropy of the surroundings and of the universe will be negative or positive (5 pts each). (a)    One mole of ammonia gas decomposes to nitrogen and hydrogen gases. (b)    12 g of liquid water freezes.