Question

A sample of K(s) of mass 3.162 g undergoes combustion in a constant volume calorimeter at...

A sample of K(s) of mass 3.162 g undergoes combustion in a constant volume calorimeter at 298.15 K. The calorimeter constant is 1849 J⋅K−1, and the measured temperature rise in the inner water bath containing 1508 g of water is 1.776 K. CP,m(H2O,l)=75.3J⋅mol−1⋅K−1.

Part A

Calculate ΔU∘f for K2O.

Part B

Calculate ΔH∘f for K2O.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In order to calibrate a constant volume bomb calorimeter, the combustion of (7.450x10^-1) g of benzoic...
In order to calibrate a constant volume bomb calorimeter, the combustion of (7.450x10^-1) g of benzoic acid, C6H5COOH, was observed to cause the temperature in the calorimeter to rise from 25.000 to (2.87000x10^1) oC. The energy of combustion of benzoic acid, ΔU, is -3226.7 kJ mol-1. What is total heat capacity (C) of the calorimeter (including all its contents) in kJ oC-1?
Benzoic acid, 1.40 g , is reacted with oxygen in a constant volume calorimeter to form...
Benzoic acid, 1.40 g , is reacted with oxygen in a constant volume calorimeter to form H2O(l) and CO2(g) at 298 K. The mass of the water in the inner bath is 1.45×103 g . The temperature of the calorimeter and its contents rises 2.85 K as a result of this reaction.
A 0.727 g sample of D-ribose (C5H10O5) was placed in a bomb calorimeter (constant volume) and...
A 0.727 g sample of D-ribose (C5H10O5) was placed in a bomb calorimeter (constant volume) and ignited in the presence of excess oxygen. The temperature was observed to rise by 0.910 K. In a separate experiment, 0.825 g of benzoic acid (C6H5CO2H) is similarly ignited in the same calorimeter, and is observed to cause an increase of the temperature of 1.940 K. The internal energy of combustion of benzoic acid is -3251 kJ mol-1. (a) Calculate the heat capacity of...
1. A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine...
1. A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the heat of combustion of fuels and the energy content of foods. In an experiment, a 0.4137 g sample of bianthracene (C28H18) is burned completely in a bomb calorimeter. The calorimeter is surrounded by 1.361×103 g of water. During the combustion the temperature increases from 24.82 to 27.25 °C. The heat capacity of water is 4.184 J g-1°C-1. The heat capacity of the calorimeter...
Part A When 2.275 g of anthracene, C14H10, is combusted in a bomb calorimeter that has...
Part A When 2.275 g of anthracene, C14H10, is combusted in a bomb calorimeter that has a water jacket containing 500.0 g of water, the temperature of the water increases by 43.15°C. Assuming that the specific heat of water is 4.18 J/(g • °C), and that the heat absorption by the calorimeter is negligible, estimate the enthalpy of combustion per mole of anthracene. Part B The specific heat capacity of methane gas is 2.20 J/g• K. How many joules of...
When 0.5141 g of biphenyl (C12H10) undergoes combustion in a bomb calorimeter, the temperature rises from...
When 0.5141 g of biphenyl (C12H10) undergoes combustion in a bomb calorimeter, the temperature rises from 25.823 °C to 29.419 °C. Find ΔrU and ΔrH for the combustion of biphenyl in kJ mol−1 at 298 K. The heat capacity of the bomb calorimeter, determined in a separate experiment, is 5.861 kJ °C−1.
A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the...
A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the heat of combustion of fuels and the energy content of foods. In an experiment, a 0.3833 g sample of phenanthrene (C14H10) is burned completely in a bomb calorimeter. The calorimeter is surrounded by 1.284×103 g of water. During the combustion the temperature increases from 22.04 to 24.54 °C. The heat capacity of water is 4.184 J g-1°C-1. The heat capacity of the calorimeter was...
A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the...
A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the heat of combustion of fuels and the energy content of foods. In an experiment, a 0.5265 g sample of bisphenol A (C15H16O2) is burned completely in a bomb calorimeter. The calorimeter is surrounded by 1.377×103 g of water. During the combustion the temperature increases from 21.79 to 24.65 °C. The heat capacity of water is 4.184 J g-1°C-1. The heat capacity of the calorimeter...
A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the...
A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the heat of combustion of fuels and the energy content of foods. In an experiment, a 1.4170 g sample of L-ascorbic acid (C6H8O6) is burned completely in a bomb calorimeter. The calorimeter is surrounded by 1.354×103 g of water. During the combustion the temperature increases from 24.92 to 27.68 °C. The heat capacity of water is 4.184 J g-1°C-1. The heat capacity of the calorimeter...
When 0.535 g of biphenyl (C12H10) undergoes combustion in a bomb calorimeter, the temperature rises from...
When 0.535 g of biphenyl (C12H10) undergoes combustion in a bomb calorimeter, the temperature rises from 25.7 ∘C to 29.5 ∘C. Part A Find ΔErxn for the combustion of biphenyl in kJ/mol biphenyl. The heat capacity of the bomb calorimeter, determined in a separate experiment, is 5.86 kJ/∘C. ΔErxn =
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT