Question

1. 0.1964 g sample of the solid quinone (C6H4O2) is combusted in a bomb calorimeter in...

1. 0.1964 g sample of the solid quinone (C6H4O2) is combusted in a bomb calorimeter in the presence of excess oxygen. The total heat capacity of the calorimeter including water is 1.560 kJ/°C. The temperature of the calorimeter increases initially from 22.000˚C to 25.200˚C. Write the balanced combustion reaction: (diff=3) a. Calculate the enthalpy of combustion of quinone in kJ/mol. b. Determine the enthalpy of formation of quinone (in kJ/mol). Use Appendix C from your textbook as needed. Hint: Write a balanced combustion reaction first, where water is formed as a liquid. Look up standard enthalpy of formation values of CO2 (g) and H2O (l) in your textbook Appendix C (in the end pages of the eText).

Homework Answers

Answer #1

1)

a)

balanced equation :

C6H4O2 (s) + 6O2 (g) -------------> 6CO2 (g) + 2H2O (l)

b)

temperature difference = 25.2 - 22 = 3.2 oC

heat capacity of the calorimeter = 1.560 kJ / oC

Q = Cp dT = 1.560 x 3.2

   = 4.992 kJ

moles of quinone = 0.1964 / 108.096 = 1.817 x 10^-3 mol

delta H = - Q / n = - 4.992 / 1.817 x 10^-3

delta H = 2747.5 kJ /mol

enthalpy of combustion of quinone = - 2747.5 kJ /mol

b)

C6H4O2 (s) + 6O2 (g) -------------> 6CO2 (g) + 2H2O (l)

enthalpy of formation of quinone = - 185.1 kJ/mol

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A sample of asparagine was burned in the bomb calorimeter calibrated above. The following energy value...
A sample of asparagine was burned in the bomb calorimeter calibrated above. The following energy value was determined for the balanced reaction: 2 C4H8N2O3(s) + 13 O2(g) → 8 CO2(g) + 8 H2O(l) + 4 NO2(g) ΔrU = -3720 kJ Calculate the enthalpy of formation for solid asparagine, ΔfH(C4H8N2O3, ΔfH(CO2, g) = -393.52 kJ/mol ΔfH(H2O, l) = -285.83 kJ/mo lΔfH(NO2, g) = +33.10 kJ/mol Assume that ΔrU= ΔrH The answer is -790 kJ/mol enthalpy of formation solid asparagine 1. What...
1.) In an experiment, a 0.6319 g sample of para-benzoquinone (C6H4O2) is burned completely in a...
1.) In an experiment, a 0.6319 g sample of para-benzoquinone (C6H4O2) is burned completely in a bomb calorimeter. The calorimeter is surrounded by 1.276×103 g of water. During the combustion the temperature increases from 23.67 to 26.17 °C. The heat capacity of water is 4.184 J g-1°C-1. The heat capacity of the calorimeter was determined in a previous experiment to be 786.6 J/°C. Assuming that no energy is lost to the surroundings, calculate the molar heat of combustion of para-benzoquinone...
1) When 1.523 g of liquid pentane (C5H12) combusts in a bomb calorimeter, the temperature rises...
1) When 1.523 g of liquid pentane (C5H12) combusts in a bomb calorimeter, the temperature rises from 23.7?C to 29.8 ?C. What is ?Urxn for the reaction in kJ/mol pentane? The heat capacity of the bomb calorimeter is 5.23 kJ/?C. 2. The enthalpy of combustion of benzoic acid (C6H5CO2H) is -3228 kJ/mol. The burning of 1.698 g of benzoic acid in a calorimeter causes the temperature to increase by 2.865.C. What is the heat capacity in kJ/C) of the calorimeter?
When 0.455 g of anthracene, C14H10, is combusted in a bomb calorimeter that has a water...
When 0.455 g of anthracene, C14H10, is combusted in a bomb calorimeter that has a water jacket containing 500.0 g of water, the temperature of the water increases by 8.63 degrees C. Assuming that the specific heat of water is 4.18 J/(g degrees C) and that the heat absorption by the calorimeter is negligible, estimate the enthalpy of combustion per mole of anthracene.
When 2.25mg of anthracene was combusted in a constant volume bomb calorimeter, the temperature rose by...
When 2.25mg of anthracene was combusted in a constant volume bomb calorimeter, the temperature rose by 1.35K. Given that the standard molar enthalpy of combustion of anthracene at 298K is -7061 kJ/mol, calculate the heat capacity of the calorimeter.
A pure sample of pure 3-ethylhexane (C8H18) is combusted in a bomb calorimeter. If the combustion...
A pure sample of pure 3-ethylhexane (C8H18) is combusted in a bomb calorimeter. If the combustion of 5.50 g of 3-ethylhexane results in a rise in temperature from 37.29 °C to 44.00 °C, what is the heat capacity (in kJ/K) of the calorimeter? Report your answer to three significant figures. The heat of combustion (ΔH°c) for 3-ethylhexane is -5470.12 kJ/mol.
1. A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine...
1. A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the heat of combustion of fuels and the energy content of foods. In an experiment, a 0.4137 g sample of bianthracene (C28H18) is burned completely in a bomb calorimeter. The calorimeter is surrounded by 1.361×103 g of water. During the combustion the temperature increases from 24.82 to 27.25 °C. The heat capacity of water is 4.184 J g-1°C-1. The heat capacity of the calorimeter...
Part A When 2.275 g of anthracene, C14H10, is combusted in a bomb calorimeter that has...
Part A When 2.275 g of anthracene, C14H10, is combusted in a bomb calorimeter that has a water jacket containing 500.0 g of water, the temperature of the water increases by 43.15°C. Assuming that the specific heat of water is 4.18 J/(g • °C), and that the heat absorption by the calorimeter is negligible, estimate the enthalpy of combustion per mole of anthracene. Part B The specific heat capacity of methane gas is 2.20 J/g• K. How many joules of...
a 6.55g sample of aniline (C6H5NH2 M.M=93.1 g/mol) was combusted in a bomb calorimeter with heat...
a 6.55g sample of aniline (C6H5NH2 M.M=93.1 g/mol) was combusted in a bomb calorimeter with heat capacity of 14.25 kj/°C. if the initial temp. was 32.9°C use the information below to determine the value of final temperature of the calorimeter.                   4C6H5NH2 (l) + 35 O2 (g) -> 24 Co2 (g) + 14 H2o (g)+ 4NO2 (g) ◇H°RXN= -1.28 x 10^4 KJ
A 0.424 g sample of liquid C5H12 was combusted completely using excess oxygen inside a bomb...
A 0.424 g sample of liquid C5H12 was combusted completely using excess oxygen inside a bomb (constant volume) calorimeter, with the products being carbon dioxide and liquid water. The calorimeter's heat capacity is 4.782 kJ °C-1. If the temperature inside the calorimeter increased from 25.0 °C to 33.4 °C, determine ΔH for this reaction with respect to the system in kJ mol-1 at 298 K. Do not worry about how realistic the final answer is.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT