Question

4. How the reaction conditions (T and P) should be changed in order to shift the...

4. How the reaction conditions (T and P) should be changed in order to shift the equilibrium
CO (gas) + H2O (gas) CO2 (gas) + H2 (gas) if ΔН0800K = -36.994 KJ/mol.

Homework Answers

Answer #1

Reaction:

CO(g) +H2O(g) <----> CO2(g) +H2(g)

Since number of moles of gas are equal in both reactant and product side

Therefore, no effect of changing the pressure on equilibrium.i.e. equilibrium will not shift on changing the pressure.

Also ∆H° for the reaction is negative(-36.994 KJ/mol) implies the reaction is exothermic reaction.

Therefore for exothermic reactions by Le Chatelier's principle:

Increase in temperature will result the reaction to shift in backward direction. That is on increasing temperature more CO and H2O will be produced.

Decrease in temperature will result the reaction to shift in forward direction. That is on decreasing temperature more CO2 and H2 will be produced.

"Please give good ratings"

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Indicate which direction the reaction at equilibrium should shift under the given conditions for the reaction...
Indicate which direction the reaction at equilibrium should shift under the given conditions for the reaction of PCl3(g) + Cl2(g) ⇌ PCl5(g). addition of PCl3 addition of Cl2 addition of PCl5 removal of PCl3 removal of Cl2 removal of PCl5 decrease the volume of the container addition of Ne Indicate which direction the reaction at equilibrium should shift under the given conditions for the exothermic reaction of H2(g) + CO2(g) ⇌ H2O(g) + CO(g). addition of CO2 addition of H2O...
Determine how each of the following changes will affect the equilibrium reaction below (shift left, shift...
Determine how each of the following changes will affect the equilibrium reaction below (shift left, shift right, no change) H2O(g) + C(s) ↔ H2(g) + CO(g) ∆H° = 131 kJ a. increasing the temperature b. adding CO c. removing H2 c. removing H e. increasing the volume of the container f. adding more carbon to the reaction
Consider the following reaction. CO (g) +H2O (g) = CO2 (g) + H2 (g) If the...
Consider the following reaction. CO (g) +H2O (g) = CO2 (g) + H2 (g) If the reaction begins in a 10.00 L vessel with 2.5 mol CO and 2.5 mol H2O gas at 588K (Kc= 31.4 at 588 K). Calculate the concentration of CO, H2O, CO2, and H2 at equilibrium.
Consider the water-gas shift reaction: H2(g) + CO2(g) = H2O(g) + CO(g) A) Find Kp for...
Consider the water-gas shift reaction: H2(g) + CO2(g) = H2O(g) + CO(g) A) Find Kp for this reaction at 298 K B) What is 1) Consider the water-gas shift reaction: H2(g) + CO2(g) = H2O(g) + CO(g). A) Find Kp for this reaction at 298 K. B) What is ΔH° for this reaction? C) What type of pressure and temperature change would favor CO production? D) What is K at 1000 K?
At a certain temperature the reaction CO(g) + H2O(g) CO2(g) + H2(g) has Kc = 0.400....
At a certain temperature the reaction CO(g) + H2O(g) CO2(g) + H2(g) has Kc = 0.400. Exactly 1.00 mol of each gas was placed in a 100.0 L vessel and the mixture underwent reaction. What was the equilibrium concentration of each gas? [CO] = M [H2O] = M [H2] = M [CO2] =
The water-gas shift reaction can be written as CO + H2O ↔ CO2 + H2. In...
The water-gas shift reaction can be written as CO + H2O ↔ CO2 + H2. In a continuous, steady-state reactor 1 mol CO and 2 mol H2O are fed to the system. The equilibrium constant, K at 100oC for the reaction is equal to 1. What is the composition of the product stream? a. Following the general procedure from class (PFD, convert all units to same basis, write all species balances, DOF analysis, etc.), determine if it possible to solve...
The H2/CO ratio in mixtures of carbon monoxide and hydrogen (called synthesis gas) is increased by...
The H2/CO ratio in mixtures of carbon monoxide and hydrogen (called synthesis gas) is increased by the water-gas shift reaction CO(g)+H2O(g)⇌CO2(g)+H2(g), which has an equilibrium constant Kc= 4.24 at 800 K. Part A) Calculate the equilibrium concentration of CO if CO, H2O, CO2, and H2 are added to a reaction vessel with initial concentrations of 0.180 M. Express your answer to three decimal places and include the appropriate units. [CO]= Part B) Calculate the equilibrium concentration of H2O if CO,...
For an equimolar CO to H2O mixture, if conversion is 50% in water-gas-shift reaction, the equilibrium...
For an equimolar CO to H2O mixture, if conversion is 50% in water-gas-shift reaction, the equilibrium mole fraction of H2 exceeds 30%. True or false and why?
The Equilibrium constant Kc for the reaction H2(g) + CO2(g) -> H2O(g) + CO(g) is 4.2...
The Equilibrium constant Kc for the reaction H2(g) + CO2(g) -> H2O(g) + CO(g) is 4.2 at 1650 deg C. Initially .74 mol H2 and .74 mol CO2 are injected into a 4.6-L flask. Calculate the concentration of each species at equilibrium. H2= CO2 = H2O= CO=
Refer to the reaction system C(s) + H2O(g) ↔ CO(g) + H2(g) at equilibrium for which...
Refer to the reaction system C(s) + H2O(g) ↔ CO(g) + H2(g) at equilibrium for which ΔH°rxn = +131 kJ. Assume ideal gas behavior. Predict the direction in which the above equilibrium will shift as a result of the stated change in conditions. a) An increase in the reaction temperature. b) A decrease in the amount of C(s). c) A decrease in the reactor volume. d) An increase in PH2O. e) Addition of N2 gas to the reaction mixture.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT