Question

If the allele frequency of A is 0.20, what would be the expected number of heterozygotes...

If the allele frequency of A is 0.20, what would be the expected number of heterozygotes in a population of 200 individuals, assuming HWE and that there are two alleles in the population?

Homework Answers

Answer #1

If there are two alleles for the locus in question, lets say the other allele is "a". Further, say frequency of A or freq(A)=p and freq(a)=q. Now, if p= 0.20, then q= 1-0.20=0.80.

According to Hardy -Weinberg principle, p2+2pq+q2=1, where p2 is the genotype frequency of AA homozygotes, q2 is the genotype frequency of aa homozygotes, and 2pq is the genotype frequency of the heterozygotes.

Given, p=0.20, deduced, q=0.80, then genotype frequency for heterozygotes is expected to be 2pq=2*0.20*0.80=0.32.

This means the probability of someone to be a heterozygote for the locus in question in the population is 0.32. In other words, 32% of the population are heterozygotes. hence, expected number of heterozygotes in a population of 200 would be= 200*0.32=64.  

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
3) In general, p = allele frequency of the dominant allele and q = allele frequency...
3) In general, p = allele frequency of the dominant allele and q = allele frequency of the recessive allele. Using the product and/or sum rule(s), use these variables (p and q) to determine the probabilities of an individual in the next generation being: a) Homozygous dominant (A dominant allele (A) AND another dominant allele (A))? b) Homozygous recessive (A recessive allele (a) AND another recessive allele (a))? c) Heterozygote (Aa OR aA)? 4a) In a population in Hardy-Weinberg equilibrium,...
A gene in a randomly-mating population has two alleles (A,a), and the allele frequency of A...
A gene in a randomly-mating population has two alleles (A,a), and the allele frequency of A is 0.65. Calculate the frequency of homozygous recessive individuals (aa) in the population.
19.If the frequency of the sickle cell allele in a particular population is 0.12, what is...
19.If the frequency of the sickle cell allele in a particular population is 0.12, what is the frequency of heterozygotes? What percentage of the population is expected to have sickle cell disease? 20.In the previous problem, I suspect you applied the Hardy-Weinberg equation (if not: GIGANTIC HINT). However, a frequency of the sickle cell allele that high is likely only to exist in a population where malaria is endemic - it’s not expected to be that high elsewhere. Given that...
4 In a population of peas, the frequency of the dominant allele for a yellow seed...
4 In a population of peas, the frequency of the dominant allele for a yellow seed is 0.29 and the frequency of the recessive allele for a green seed is 0.71. What would the genotypic frequencies be if the population is in equilibrium? _____ = Frequency of homozygous dominant individuals _____ = Frequency of heterozygous individuals _____ = Frequency of homozygous recessive individuals How many individuals would you expect of each genotype in a population of 350 peas? _____ =...
If at a locus, three alleles in a population, such that the A allele is present...
If at a locus, three alleles in a population, such that the A allele is present at frequency 0.2, and C allele at frequency 0.4, after one generation of random mating in a population of size 100, the total number of heterozygotes will be: Select one: a. 36 b. 64 c. 10 d. 12 e. 24
Hardy-Weinberg equilibrium: In a certain population in the US, the frequency of CCR5-Δ32 homozygous individuals is...
Hardy-Weinberg equilibrium: In a certain population in the US, the frequency of CCR5-Δ32 homozygous individuals is 1%. Assuming genetic equilibrium, what is the frequency of heterozygotes in this population? In a certain population in the US, the frequency of CCR5-Δ32 homozygous individuals is 0.0016. Assuming Hardy-Weinberg equilibrium, what is the frequency of the normal allele, CCR5-1?
In humans, the widow’s peak allele is dominant over the straight hairline allele. In a population...
In humans, the widow’s peak allele is dominant over the straight hairline allele. In a population of humans, the frequency of the allele for a widow’s peak is 0.61 and the frequency of the allele for a straight hairline is 0.39. What would the genotypic frequencies be if the population is in equilibrium? _____ = Frequency of homozygous dominant individuals _____ = Frequency of heterozygous individuals _____ = Frequency of homozygous recessive individuals How many individuals would you expect of...
In mice, a mahogany coat color allele is dominant over the tan coat color allele. In...
In mice, a mahogany coat color allele is dominant over the tan coat color allele. In a population of mice, the frequency of the allele for mahogany coat color is 0.19 and the frequency of the allele for tan coat color is 0.81. What would the genotypic frequencies be if the population is in equilibrium? ___=Frequency of homozygous dominant individuals ___=Frequency of heterozygous individuals ___=Frequency of homozygous recessive individuals How many individuals would you expect of each genotype in a...
Q: The frequency of an allele in a population of manatees is 0.15. If the population...
Q: The frequency of an allele in a population of manatees is 0.15. If the population is at Hardy-Weinberg, what number of the 600 individuals should be homozygous for this allele? Please provide explanation
HWE Question Based on the objective you should feel comfortable calculating expected genotype frequencies when given...
HWE Question Based on the objective you should feel comfortable calculating expected genotype frequencies when given observed allele frequencies. You should also be able to compare expected genotype frequencies from HWE to observed frequencies and determine if evolution is occurring. Here's a sample problem. You can do this without a calculator! Let's take the noob gene, a gene with two known alleles that determines feather color in the eastern lark. The two alleles, let's call them delta and gamma, can...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT