Question

Subject: Cell Biology Why do some books state that the standard free energy for the hydrolysis...

Subject: Cell Biology Why do some books state that the standard free energy for the hydrolysis of the gamma-phosphate group (the one furthest from the ribose) of ATP is different from the standard free energy change for the hydrolysis of the beta phosphate group (the middle phosphate group)? (my textbook shows the same standard free energy change for the hydrolysis of these two groups and that the textbook uses kcal/mol as the unit for free energy (some textbooks use kJ/mol)).

Homework Answers

Answer #1

In an ATP, The two phosphoanhydride bond also called as the high energy bond are responsible for high energy content of the molecule. Hydrolysis of this bond provide energy that drives various biochemical reaction. Gamma phosphate is the primary phosphate group that is hydrolyzed when energy is neeeded to drive anabolic process. Since it is located farthest from the ribose sugar, it has higher energy of hydrolysis then the alpha or beta phosphate and hence their standard free energy for hydrolysis is different.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Standard Free Energy of Hydrolysis, ∆ G o', of some organophosphate compounds (phosphate isreleased as one...
Standard Free Energy of Hydrolysis, ∆ G o', of some organophosphate compounds (phosphate isreleased as one of the products of hydrolysis)                                     Compound kJ/mol phosphoenolpyruvate -61.9 carbamyl phosphate -51.4 creatine phosphate -43.1 acetyl phosphate -42.2 ATP (to ADP) -30.5 Glucose-1-phosphate -20.9 Glucose-6-phosphate -13.8 Glycerol-3-phosphate -9.2 Use the table in the above table to calculate the ∆G o' (in kJ/mol) for the following reaction: ATP +  glucose --------> ADP  +  glucose-6-phosphate
The standard free energy change for ATP hydrolysis is -30.5 kJ/mol. Therefore, the free energy change...
The standard free energy change for ATP hydrolysis is -30.5 kJ/mol. Therefore, the free energy change for this reaction in a cell in which the concentration of ATP, ADP, and Pi are 3.1 mM, 2.2 mM and 6.8 mM, respectively, and assuming a physiologically relevant temperature (37 °C), is: Answer -44.25 kJ/mol explain
It’s demanding to measure the standard free-energy change associated with the hydrolysis of ATP because the...
It’s demanding to measure the standard free-energy change associated with the hydrolysis of ATP because the minute amount of ATP remaining at equilibrium is difficult to measure accurately. The value of ΔG'º can be calculated indirectly, however, from the equilibrium constants of two other reactions (the first of which should look familiar) that have less favorable equilibrium constants: glucose-6-phosphate + H2O à glucose + Pi                    Keq'=270 ATP + glucose à ADP + glucose-6-phosphate   Keq'=890 Using this information, calculate ΔG'º for...
To answer this question, please reference the Problem Solving Video: Free Energy, ATP, and Creatine in...
To answer this question, please reference the Problem Solving Video: Free Energy, ATP, and Creatine in Resting Muscles. Suppose a sprinter's muscle tissue contains creatine phosphate at a concentration of 120 mM after dietary supplementation. The sprinter's muscle tissue also contains 4 mM ATP, 0.013 mM ADP, and 13 mM creatine. Use the table of the standard free energies of hydrolysis of phosphorylated compounds and the given concentrations to calculate the free energy change, ΔG, of the creatine kinase reaction...
The standard-state free energy change in oxidizing NADH with oxygen is -220 kJ/mol (-52.6 kcal/mol). If...
The standard-state free energy change in oxidizing NADH with oxygen is -220 kJ/mol (-52.6 kcal/mol). If we accept this value as representative of the actual free energy released (ΔG), which is not necessarily the case (see previous problem), then how many ATPs could potentially be synthesized per NADH oxidized if the cost of ATP synthesis was 11.4 kcal/mol? Report your answer to the nearest tenths.
The standard free energy that is required for the sodium-potassium ATPase to pump two K+ ions...
The standard free energy that is required for the sodium-potassium ATPase to pump two K+ ions into the cell and three Na+ ions out is +43.8 kJ/mol but the standard free energy change of hydrolysis of ATP is only -32 kJ/mol. This apparent imbalance of free energy can be accounted for because: A) the movement of Na+ ions is down the concentration gradient . B) the movement of K+ ions is down the concentration gradient. C) the free energy provided...
The standard Gibbs free energy change for hydrolysis or pure ATP to pure ADP is -31KJ/mol....
The standard Gibbs free energy change for hydrolysis or pure ATP to pure ADP is -31KJ/mol. The reaction is written ATP = ADP +Pi. What is the Gibbs energy of reaction in an environment at 37 C in which the ATP, ADP, and Pi concentrations are all 1mmol/L or 1 µmol/L?
In some cells glucose can be taken up by two different transport systems: facilitated diffusion and...
In some cells glucose can be taken up by two different transport systems: facilitated diffusion and glucose/proton symporter. a) Why is glucose not taken up by passive diffusion but by means of permeases? Describe the composition and structure of the permeases. b) Distinguish between facilitated diffusion and carbohydrate/proton symporter. The energy used to promote the active transport is the sum of the concentration-dependent energy (R∙T∙lnK) and the electrical work (z∙F∙ΔV). This process is usually linked directly or indirectly to ATP...
In some cells glucose can be taken up by two different transport systems: facilitated diffusion and...
In some cells glucose can be taken up by two different transport systems: facilitated diffusion and glucose/proton symporter. a) Why is glucose not taken up by passive diffusion but by means of permeases? Describe the composition and structure of the permeases. b) Distinguish between facilitated diffusion and carbohydrate/proton symporter. The energy used to promote the active transport is the sum of the concentration-dependent energy (R∙T∙lnK) and the electrical work (z∙F∙ΔV). This process is usually linked directly or indirectly to ATP...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT