Question

4 In a population of peas, the frequency of the dominant allele for a yellow seed...

4 In a population of peas, the frequency of the dominant allele for a yellow seed is 0.29 and the frequency of the recessive allele for a green seed is 0.71. What would the genotypic frequencies be if the population is in equilibrium? _____ = Frequency of homozygous dominant individuals _____ = Frequency of heterozygous individuals _____ = Frequency of homozygous recessive individuals How many individuals would you expect of each genotype in a population of 350 peas? _____ = Number of homozygous dominant individuals _____ = Number of heterozygous individuals _____ = Number of homozygous recessive individuals

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In humans, the widow’s peak allele is dominant over the straight hairline allele. In a population...
In humans, the widow’s peak allele is dominant over the straight hairline allele. In a population of humans, the frequency of the allele for a widow’s peak is 0.61 and the frequency of the allele for a straight hairline is 0.39. What would the genotypic frequencies be if the population is in equilibrium? _____ = Frequency of homozygous dominant individuals _____ = Frequency of heterozygous individuals _____ = Frequency of homozygous recessive individuals How many individuals would you expect of...
In mice, a mahogany coat color allele is dominant over the tan coat color allele. In...
In mice, a mahogany coat color allele is dominant over the tan coat color allele. In a population of mice, the frequency of the allele for mahogany coat color is 0.19 and the frequency of the allele for tan coat color is 0.81. What would the genotypic frequencies be if the population is in equilibrium? ___=Frequency of homozygous dominant individuals ___=Frequency of heterozygous individuals ___=Frequency of homozygous recessive individuals How many individuals would you expect of each genotype in a...
In a population of flour beetles with 1,000 individuals, 483 of the population are black. In...
In a population of flour beetles with 1,000 individuals, 483 of the population are black. In this species, red (R) is the dominant trait while black (r) is the recessive trait. What are the allele frequencies of the recessive and the dominant allele? What are the genotypic frequencies of homozygous recessive, homozygous dominant and heterozygous individuals? How many individuals of the population are homozygous dominant for the trait? What is the frequency of the dominant allele?
3) In general, p = allele frequency of the dominant allele and q = allele frequency...
3) In general, p = allele frequency of the dominant allele and q = allele frequency of the recessive allele. Using the product and/or sum rule(s), use these variables (p and q) to determine the probabilities of an individual in the next generation being: a) Homozygous dominant (A dominant allele (A) AND another dominant allele (A))? b) Homozygous recessive (A recessive allele (a) AND another recessive allele (a))? c) Heterozygote (Aa OR aA)? 4a) In a population in Hardy-Weinberg equilibrium,...
If the allele frequency of a dominant allele is 0.6, then the genotype frequency of individuals...
If the allele frequency of a dominant allele is 0.6, then the genotype frequency of individuals that are homozygous for the recessive trait is: 60%. 48%. 40%. 36%. 16%.
In a species of mouse, tail length is controlled by genes at a single locus, with...
In a species of mouse, tail length is controlled by genes at a single locus, with the long tail allele dominant to the short tail allele. A population has 44 long tail and 36 short tail mice, with 27 of the long tail mice having a homozygous dominant genotype. Is this population in equilibrium? Calculate p and q from the number of individuals of each genotype: p = _____ q = _____ Calculate the expected frequency of each genotype if...
In peas yellow is dominant and green is recessive. You have crossed green peas to yellow...
In peas yellow is dominant and green is recessive. You have crossed green peas to yellow peas and obtained all yellow peas. Indicate the genotype of each parent and the genotype of the F1 progeny. You self-cross the F1 and get 115 individuals 32 green. Give the expected outcome for this cross and perform Chi Squared analysis to determine if this is likely a Mendelian trait (be sure to give expected and observed, show your calculations, and indicate your degrees...
In mendel experiment, a yellow pea self-fertilization produces a progeny containing yellow and green peas, in...
In mendel experiment, a yellow pea self-fertilization produces a progeny containing yellow and green peas, in this experiment the yellow pea is a. heterozygous b. homozygous recessive c. homozygous dominant
Neurofibromatosis is an autosomal dominant disease. The frequency of the recessive allele is 0.98. In population...
Neurofibromatosis is an autosomal dominant disease. The frequency of the recessive allele is 0.98. In population of 2250 how many individuals would you expect to not have the disease?
p+q =1 All of the allele frequencies p2 + 2pq + q2 =1 All of the...
p+q =1 All of the allele frequencies p2 + 2pq + q2 =1 All of the genotype frequencies together equals 1 p2 and q2 Frequencies for each homozygotes 2pq Frequencies for Heterozygotes. p2 + 2pq= + q2 Homozygous Dominant Heterozygous Homozygous recessive If the frequencies of the color in Homozygous recessive frequencies pea plants are 30% in the population what are the genotype and phenotype frequencies in the populations. A homozygous recessive plant would be (pp) and a Homozygous dominant...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT