Question

Assume there is a locus in a population with two alleles (p and q), where p...

Assume there is a locus in a population with two alleles (p and q), where p = 0.7. Assume there are 100 individuals in this population. If the locus is in Hardy-Weingberg equilibrium, how many individuals of each genotype are expected?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. There are two alleles at a locus: A and P. Assume these two alleles are...
1. There are two alleles at a locus: A and P. Assume these two alleles are in Hardy-Weinberg equilibrium. Assume also that Allele P has a frequency of exactly 1% in the population. Given this information, what is the frequency of AP heterozygotes in the population? 2. You are studying an allele A that governs parasite resistance in a large population of rabbits. You observe that different combinations of A and a produce phenotypes that have different fitnesses due to...
Given a single genetic locus with two alleles: A1, which occurs at a frequency 0.75, and...
Given a single genetic locus with two alleles: A1, which occurs at a frequency 0.75, and A2, which occurs at a frequency of 0.25, how may individuals of genotype A2A2 do you expect in a population of 600 individuals at Hardy-Weinberg equilibrium?
Let A and a be the alleles at a locus l in a population evolving with...
Let A and a be the alleles at a locus l in a population evolving with infinite, non-overlapping generations. Assume that the probability an AA child survives to reproductive maturity is 0.8; for genotype Aa assume this probability is 0.6 and for genotype aa it is 0.7. Let fA(t) denote the frequency of A among the newborns of generation t. The population at birth in generation 0 is in Hardy-Weinberg equilibrium with fA(0) = 0.4. (a) What is the probability...
A hypothetical population ofcats has two alleles, TL and TS, for a gene that codes for...
A hypothetical population ofcats has two alleles, TL and TS, for a gene that codes for tail length. The allele frequency of TL is 0.7 and the allele frequency of TS is 0.3. TLTL individuals have long tails. TLTS individuals have medium tails. TSTS individuals have short tails. The equation for Hardy-Weinberg equilibrium states that at a locus with two alleles, as in this cat population, the three genotypes will occur in specific proportions, described by the equation p2 +...
Consider a racoon population that exhibits variation at the G locus, which has two possible alleles:...
Consider a racoon population that exhibits variation at the G locus, which has two possible alleles: G1 and G2. The population starts out at Hardy Weinberg Equilibrium and the frequency of the G1 allele in the original population is 0.3. The relative fitness of each genotype during this generation is listed below. Use information to answer the following questions. w11 = 0.8 w12 = 1.0 w22 = 0.5 Calculate the average fitness for the population. Calculate the genotype frequencies in...
In a bird species, the shape of the beak is encoded by a locus with two...
In a bird species, the shape of the beak is encoded by a locus with two 2 co-dominant alleles Na and Nz. Na gives long beak in double dose, while individuals who are homozygous for Nz have short beak. In a population, the following genotype frequencies were observed: Na Na = 0.5 Na Nz = 0.3 Nz Nz = 0.2 a) Assume a total of 600 individuals in the population. Set up a hypothesis and use an x2 test to...
Population Genetics Question: Consider a locus with two alleles, A and a. The frequencies of the...
Population Genetics Question: Consider a locus with two alleles, A and a. The frequencies of the two homozygotes are both 0.4. What genotype is selected against? What is the selection coefficient s?
Consider a single locus in a population with 4 alleles with frequencies 0.4, 0.25, 0.15, 0.2....
Consider a single locus in a population with 4 alleles with frequencies 0.4, 0.25, 0.15, 0.2. The genotypes are in Hardy-Weinberg equilibrium. What is the current heterozygosity in the population? If the population size is 100, what will the heterozygosity be after 10 generations? If the generation time is 20 years, how long will it take for the heterozygosity to be reduced by half?
In a species of mouse, tail length is controlled by genes at a single locus, with...
In a species of mouse, tail length is controlled by genes at a single locus, with the long tail allele dominant to the short tail allele. A population has 44 long tail and 36 short tail mice, with 27 of the long tail mice having a homozygous dominant genotype. Is this population in equilibrium? Calculate p and q from the number of individuals of each genotype: p = _____ q = _____ Calculate the expected frequency of each genotype if...
Alleles at two gene loci influence % protein in pea leaves. Each locus assorts independently. There...
Alleles at two gene loci influence % protein in pea leaves. Each locus assorts independently. There are two alleles at each locus; alleles A and a at locus 1, and alleles B and b at locus 2. Each upper-case allele (e.g. “A”) has an additive and cumulative effect that increases the % protein by the same amount (20%) for each upper-case allele contained in an individual. The upper-case alleles are the “contributing” alleles. There are no interlocus interactions and no...