Question

If at a locus, three alleles in a population, such that the A allele is present...

If at a locus, three alleles in a population, such that the A allele is present at frequency 0.2, and C allele at frequency 0.4, after one generation of random mating in a population of size 100, the total number of heterozygotes will be:

Select one:

a. 36

b. 64

c. 10

d. 12

e. 24

Homework Answers

Answer #1

ANSWER:

Therefore, Number of heterozygotes = total frequency of heterozygotes * number of individuals in population= 0.64 * 100 = 64

Hence, the correct option is (b) i.e, 64.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A population at a bi-allelic locus has 23 A/A, 15 A/C, 12 C/C individuals. After randomly...
A population at a bi-allelic locus has 23 A/A, 15 A/C, 12 C/C individuals. After randomly mating, if in the next generation, there are 100 individuals, the expected number of A alleles across this population is: Select one: a. 122 b. 61 c. 39 d. 78 e. 100
Consider a single locus in a population with 4 alleles with frequencies 0.4, 0.25, 0.15, 0.2....
Consider a single locus in a population with 4 alleles with frequencies 0.4, 0.25, 0.15, 0.2. The genotypes are in Hardy-Weinberg equilibrium. What is the current heterozygosity in the population? If the population size is 100, what will the heterozygosity be after 10 generations? If the generation time is 20 years, how long will it take for the heterozygosity to be reduced by half?
1. There are two alleles at a locus: A and P. Assume these two alleles are...
1. There are two alleles at a locus: A and P. Assume these two alleles are in Hardy-Weinberg equilibrium. Assume also that Allele P has a frequency of exactly 1% in the population. Given this information, what is the frequency of AP heterozygotes in the population? 2. You are studying an allele A that governs parasite resistance in a large population of rabbits. You observe that different combinations of A and a produce phenotypes that have different fitnesses due to...
There are 5 alleles at the BXR008 locus. In a large sample from the population from...
There are 5 alleles at the BXR008 locus. In a large sample from the population from which the suspects come, the frequencies of the alleles (starting from lowest to highest number of repeats) are;0.1,0.2,0.5,0.15,0.05; construct a table to calculate the matching probability and answer the following; Number of repeats Frequency 2 0.1 3 0.2 5 0.5 7 0.15 10 0.05 What is probability of the homozygous genotype consisting of the least common allele for the BXR008 locus
Consider a racoon population that exhibits variation at the G locus, which has two possible alleles:...
Consider a racoon population that exhibits variation at the G locus, which has two possible alleles: G1 and G2. The population starts out at Hardy Weinberg Equilibrium and the frequency of the G1 allele in the original population is 0.3. The relative fitness of each genotype during this generation is listed below. Use information to answer the following questions. w11 = 0.8 w12 = 1.0 w22 = 0.5 Calculate the average fitness for the population. Calculate the genotype frequencies in...
There are three different alleles at the same locus that contribute to blood type. A homozygote...
There are three different alleles at the same locus that contribute to blood type. A homozygote for AA will be type A, a homozygote for BB will be type B, and a homozygote for ii will be type O. Heterozygotes exist as well, where A is codominant with B (producing type AB), and both A and B are dominant to i. In a population, 4% are type O, and 1% of the individuals are homozygous for type A. Fill in...
Let A and a be the alleles at a locus l in a population evolving with...
Let A and a be the alleles at a locus l in a population evolving with infinite, non-overlapping generations. Assume that the probability an AA child survives to reproductive maturity is 0.8; for genotype Aa assume this probability is 0.6 and for genotype aa it is 0.7. Let fA(t) denote the frequency of A among the newborns of generation t. The population at birth in generation 0 is in Hardy-Weinberg equilibrium with fA(0) = 0.4. (a) What is the probability...
1. If the frequencies of three alleles at a locus in a population are A1= 0.5,...
1. If the frequencies of three alleles at a locus in a population are A1= 0.5, A2= 0.45, and A3= 0.05 what is the expected frequency of the A2A3 genotype? Show work that supports your answer. a. 0.0225 b. 0.05 c. 0.075. d. 0.045 e=0.5 2a. If a new mutant allele were to arise in a single individual heterozygous for the mutation within a population of a diploid species (Ne=300 individuals in the population) the probability that the new mutant...
A mainland population of 1000 blue iguanas have the neutral alleles A1 and A2 with frequencies...
A mainland population of 1000 blue iguanas have the neutral alleles A1 and A2 with frequencies of A1 = 0.50 and A2 = 0.50. A new population of blue iguanas is founded on Lizard Island with a population size of 10 males and 15 females.The neutral alleles A1 and A2 are present in the population with frequencies of A1 = 0.30 and A2 = 0.70. Migrants begin moving from the mainland to Lizard Island at a rate of 1 migrant...
1) The rate at which genetic drift fixes and eliminates alleles depends on what factor(s)? Select...
1) The rate at which genetic drift fixes and eliminates alleles depends on what factor(s)? Select one: a. population size b. intensity of non-random mating c. initial allele frequencies d. both A and C 2) During a founder event, what process can dramatically shift allele frequencies in the founder population away from the frequencies in the source population? Select one: a. genetic drift b. migration and gene flow c. negative frequency dependent selection d. linkage 3) The loss of heterozygosity...