Question

Which of the following forms as a result of 19 NADH molecules entering the electron transport...

Which of the following forms as a result of 19 NADH molecules entering the electron transport chain during aerobic respiration?

  1. 57 ATP
  2. 19 water molecules

  1. Only 1
  2. Only 2
  3. Both 1 and 2
  4. Neither 1 or 2

Homework Answers

Answer #1

Ans- c. both 1 and 2

Explanation- When 1 NADH enters electron transport chain, electrons extracted from NADH are passed from complex I to complex IV, with the movement of these electrons, protons are pumped from mitochondrial matrix to intermembrtane space. This creates a proton gradient and proton motive force. Utilising the proton motive force, ATP is synthesised. 1 NADH forms 3 ATP, therefore, 19 NADH form 57 ATP. The electrons the transferred to molecular oxygen forming water. 19 water molecules for 19 NADH.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
During aerobic respiration, the entries of NADH and FADH2 into the electron transport chain generate different...
During aerobic respiration, the entries of NADH and FADH2 into the electron transport chain generate different numbers of ATP molecules via oxidative phosphorylation. a) DRAW a labelled diagram that summarises the process. b) Show the calculations that explain the different the number of ATP produced.
Cellular respiration: 1) NADH is produced by this pathway. 2) The electron transport chain removes protons...
Cellular respiration: 1) NADH is produced by this pathway. 2) The electron transport chain removes protons from which part of mitochondria? 3) ATP is produced in all stages of cellular respiration EXCEPT _____. is this one glycolysis or pyruvate oxidation? If neither than i am very confused hah.
1. Where does the electron transport chain process take place? in the inner membrane of mitochondria...
1. Where does the electron transport chain process take place? in the inner membrane of mitochondria in the outer membrane of mitochondria in the intermembrane space of mitochondria in the matrix of mitochondria 2. Which products of the citric acid cycle are funneled into the electron transport chain? only ATP only NAD+ and FADH2 only NADH and ATP NADH, FADH2, H+, and ATP NADH, FADH2, and H+ 3. How many molecules of CO2 are produced for each turn of the...
Although both molecules are two electron carriers, NADH generates 2.5 ATP and FADH2 generates only 1.5...
Although both molecules are two electron carriers, NADH generates 2.5 ATP and FADH2 generates only 1.5 ATPs. 1) Explain how electron transport plays a role in ATP synthesis. 2) Explain why a different amount of ATP is produced for each of these electron carriers.
incomplete reduction of oxygen during the electron transport chain of cellular respiration may result in production...
incomplete reduction of oxygen during the electron transport chain of cellular respiration may result in production of ____that are damaging to cells a. CO2, CO b. FADH, H2O c. H2O, O2 d. NADH, O2 e. O2-,H2O2
During the electron transport chain process in aerobic cellular respiration, ________________. Question 1 options: A) chemiosmosis...
During the electron transport chain process in aerobic cellular respiration, ________________. Question 1 options: A) chemiosmosis is directly caused by electron transfer B) each electron carrier is phosphorylated C) ATP is generated at each step D) energy of the electrons increases at each step E) a proton concentration gradient is created across a membrane
Which is correct about the electron transport chain (ETC) in the mitochondria? A) It will oxidize...
Which is correct about the electron transport chain (ETC) in the mitochondria? A) It will oxidize the electron carrier NADH B) The ETC pumps protons to reduce NAD+ to make NADH C) Oxygen is generated during the ETC D) It is found in the matrix E) The ETC will generate ATP from ADP + Pi
The glycerol-3-phosphate shuttle can transport cytosolic NADH equivalents into the mitochondrial matrix (see Fig. 15.11c). In...
The glycerol-3-phosphate shuttle can transport cytosolic NADH equivalents into the mitochondrial matrix (see Fig. 15.11c). In this shuttle, the protons and electrons are donated to FAD, which is reduced to FADH2. These protons and electrons are subsequently donated to coenzyme Q in the electron transport chain. Given that the number of ATP molecules made per NADH and FADH2 oxidation differ by ____? the amount of ATP generated per mole of glucose when the glycerol-3-phosphate shuttle would be ____ instead of...
1.in this phase of cellular respiration, glucose is completely broken down into carbon dioxide gas, some...
1.in this phase of cellular respiration, glucose is completely broken down into carbon dioxide gas, some ATP is produced, and many molecules of NADH and some FADH2 are produced. glucose breakdown oxidative phosphorylation 2. In this phase of cellular respiration, NADH and FADH2 are used to power the electron transport chain, which in turn creates the conditions needed for the ATP synthase enzyme to make ATP. glucose breakdown oxidative phosphorylation
Oxidative phosphorylation or mitochondrial electron transport and the light reaction of photosynthesis are similar in all...
Oxidative phosphorylation or mitochondrial electron transport and the light reaction of photosynthesis are similar in all the following ways except ONE. A. Both use ATP synthase to produce ATP. B. Both involve electron transport chain. C. Both require high energy electrons from NADH to keep going. D. Both use small membrane associated electron carriers E. Both require an intact membrane.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT