Question

Eyes pieces or ocular lenses: Magnification of the image of an object. check side of ocular...

Eyes pieces or ocular lenses: Magnification of the image of an object. check side of ocular lenses and find it's the magnification capacity. The magnification capacity of this ocular lens is _X

Homework Answers

Answer #1

In this case, it will depends on your microscope. However, generally the ocular lens have a magnification of 10X. On the other hand, the objective lens will vary depending on which are you using. The magnification of the objective lens can be 10X, 40X or 100X in most of the microscopes. Finally, to calculate the total magnification you must multiply the magnification of the ocular lens by the magnification of the objective lens.
So,
The magnification capacity of this ocular lens is 10X

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
If the image is on the same side of the lens as the object the image...
If the image is on the same side of the lens as the object the image distance is negative by convention Magnifier Where is it located with respect to the lens and the object? telescope The key to understanding a telescope is to remember that the purpose is to gather light from distant objects. The image from the primary lens is magnified by a second lens to increase its size. Why should you use a longer focal length lens as...
Two concave lenses, each with f = -11 cm, are separated by 6.5 cm. An object...
Two concave lenses, each with f = -11 cm, are separated by 6.5 cm. An object is placed 20 cm in front of one of the lenses. A.Find the location of the final image produced by this lens combination. Find the location of the final image produced by this lens combination.( in front of the lens closest to the object, beyond the lens farthest from the object, between the two lenses B. Find the magnification of the final image produced...
An object and two lenses are arranged so that the object is to the left of...
An object and two lenses are arranged so that the object is to the left of and 40cm from a converging lens. The magnitude of the focal length of the first ens is 25cm. A diverging lens is 100cm to the right of the first lens and the magnitude of the focal length is 15cm. Find the location of the final image relative to the original object, the overall magnification.
When two lenses are used in combination, the first one forms an image that then serves...
When two lenses are used in combination, the first one forms an image that then serves as the object for the second lens. The magnification of the combination is the ratio of the height of the final image to the height of the object. A 1.50-cm-tall object is 58.0 cm to the left of a converging lens of focal length 40.0 cm. A second converging lens, this one having a focal length of 60.0 cm, is located 300 cm to...
When two lenses are used in combination, the first one forms an image that then serves...
When two lenses are used in combination, the first one forms an image that then serves as the object for the second lens. The magnification of the combination is the ratio of the height of the final image to the height of the object. A 1.60-cmcm-tall object is 56.0 cm to the left of a converging lens of focal length 40.0 cm. A second converging lens, this one having a focal length of 60.0 cm, is located 300 cm to...
Two concave lenses, each with f = -13 cm, are separated by 7.5 cm. An object...
Two concave lenses, each with f = -13 cm, are separated by 7.5 cm. An object is placed 20 cm in front of one of the lenses. a) di = ________________cm in front of the lens closest to the object b) Find the magnification of the final image produced by this lens combination. m = __________________
The lateral magnification of an object by a lens is negative. Which is true? The image...
The lateral magnification of an object by a lens is negative. Which is true? The image must be a virtual image. The image could be either a real or virtual image. The image must be a real image. The lateral magnification of an object by a lens is positive. Which is true? The image could be either a real or virtual image. The image must be a virtual image. The image must be a real image. Which is true about...
When two lenses are used in combination, the first one forms an image that then serves...
When two lenses are used in combination, the first one forms an image that then serves as the object for the second lens. The magnification of the combination is the ratio of the height of the final image to the height of the object. A 2.00 cm -tall object is 50.0 cm to the left of a converging lens of focal length 40.0 cm . A second converging lens, this one having a focal length of 60.0 cm , is...
The focal lengths of the converging and diverging lenses in the diagram are 8 and -11...
The focal lengths of the converging and diverging lenses in the diagram are 8 and -11 cm, respectively. The distance between the lenses is 22 cm and the object is placed 14 cm to the left of the converging lens. Determine the location of the first image with respect to the first lens (including the sign) q1=  cm. Find the magnification of this image M1=  . Determine the second object distance. p2=  cm. Determine the second (final) image distance with respect to the...
Q2. Lenses and the Eye An object O is positioned 3.5 m from a lens of...
Q2. Lenses and the Eye An object O is positioned 3.5 m from a lens of focal length f = -1.5 m as shown: Copy the diagram and draw in: the path of a parallel ray from the top of the object through the lens; the path of a ray through the centre of the lens; and hence the location of the image. Calculate the image distance di from the lens. Mark this distance on the diagram in a). A...