Question

In an island population, the frequencies of the three MN blood types are given here: M:...

In an island population, the frequencies of the three MN blood types are given here:

M: 550

MN: 725

N: 225

  1. Calculate the allele frequency of M and N.

  1. Assuming random mating, what are the expected number of individuals for each blood type?

  1. Is this population in Hardy-Weinberg Equilibrium? Show work for partial credit.

Homework Answers

Answer #1

Please look in the image for solution:

Please rate high..

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A population of humans, isolated for centuries on an island in the Indian Ocean, exhibits the...
A population of humans, isolated for centuries on an island in the Indian Ocean, exhibits the following phenotypes for the M N blood group locus. 330 M 375 MN 295 N LM and LN are two codominant alleles at this locus. LMLM alleles give type M blood. LMLN individuals are heterozygous. LNLN individuals are type N blood. a) Using the Hardy-Weinberg equilibrium, calculate the expected frequencies of these blood types. Do a chisquare test of goodness of fit to compare...
A moth census on Wooded Island counted 100 black (BB) moths, 40 gray (Bb) and 60...
A moth census on Wooded Island counted 100 black (BB) moths, 40 gray (Bb) and 60 white (bb) moths. What are the genotypic frequencies? What are the allelic frequencies? Is the population in Hardy-Weinberg equilibrium?    Phenylketonuria is a severe form of mental retardation due to a rare autosomal recessive allele. About 1 in 10,000 newborn Caucasians are affected with the disease. Calculate the frequency of carriers (i.e., heterozygotes).   Note what assumption you are making. A study on blood types in...
The MN blood group is a blood type controlled by a single gene with two loci....
The MN blood group is a blood type controlled by a single gene with two loci. Individuals may be type M (homozygous for the M allele), N (homozygous for the N allele or MN (heterozygous). In a population of 50 having the blood antigen M, 15 having blood antigen MN and 35 having the blood antigen N. Calculate the frequency of the M allele and the frequency of the N allele of this population.(Show working)
The MN blood group is a blood group controlled by a single gene with two loci....
The MN blood group is a blood group controlled by a single gene with two loci. Individuals may be the type M (homozygous for the M allele), N (homozygous for the N allele), or MN (heterozygous). In a population 50 individuals have the blood antigen M, 15 individuals have the blood antigen MN and 35 individuals have the blood antigen N. Thus the frequency of the M allele in this population is ______ and that of the N alleles is...
In 1783, a British sailing ship crashes on an island in the South Pacific. 100 individuals...
In 1783, a British sailing ship crashes on an island in the South Pacific. 100 individuals survive, only to discover that the island is already inhabited by a native population of 300. With no hope of returning home, they join the local population. A) In Great Britain, the allele frequency for blue eyes (b) is 0.8. If the native population is true-breeding for brown eyes (B, which has complete dominance over b), what is the new allele frequency for this...
The MN blood group is another blood group found on human red blood cells. There are...
The MN blood group is another blood group found on human red blood cells. There are only two alleles, M and N, which are codominant. In a population of humans there are 80 individuals that are MM, 150 MN, and 270 NN. Using the allele counting method, determine the allele frequencies for M and N.
blood type: A: 56 B: 11 AB: 8 O: 25 Calculate the allele frequencies for p...
blood type: A: 56 B: 11 AB: 8 O: 25 Calculate the allele frequencies for p , q and r. Assume the population is in Hardy Weinberg equilibrium.
You identify a population of rats on an island. Their coat color is controlled by a...
You identify a population of rats on an island. Their coat color is controlled by a single gene: BB rats are black, Bb rats are gray, and bb rats are white. You take a census of the population and record the following numbers of rats Black 150 Gray 120 White 30 a) What are the frequencies of the two alleles? b) What are the Hardy-Weinberg equilibrium frequencies for these three phenotypes? c) A heat wave hits the island. All 150...
1. The MN blood group is examined in a population, and the following numbers of genotypes...
1. The MN blood group is examined in a population, and the following numbers of genotypes are observed: 5 MM 25 MN 20 NN Assuming Hardy-Weinberg conditions, what is the expected frequency of MM individuals in the next generation? 2. The mean number of offspring produced by each of three genotypes is shown below. What is the fitness (W) for the genotype MM? 10 MM 30 MN 50 NN 3.The mean number of offspring produced by each of three genotypes...
There are three different alleles at the same locus that contribute to blood type. A homozygote...
There are three different alleles at the same locus that contribute to blood type. A homozygote for AA will be type A, a homozygote for BB will be type B, and a homozygote for ii will be type O. Heterozygotes exist as well, where A is codominant with B (producing type AB), and both A and B are dominant to i. In a population, 4% are type O, and 1% of the individuals are homozygous for type A. Fill in...