Question

For the hydrolysis of ATP to ADP + ℗i, the free-energy change is -7.3 kcal/mol under...

For the hydrolysis of ATP to ADP + ℗i, the free-energy change is -7.3 kcal/mol under standard conditions (1 M concentration of both reactants and products). In the cellular environment, however, the free-energy change is about -13 kcal/mol. What can we conclude about the free-energy change for the formation of ATP from ADP and ℗i under cellular conditions?

Homework Answers

Answer #1

Ans : It is about +13 kcal/mol.

Reaction : The ΔG of a reaction is determined not only by the intrinsic properties of reactants and products, but also by their concentrations and other reaction conditions. The standard free-energy change (ΔG°) of a reaction is directly related to its equilibrium position because the actual ΔG is a function of both Δ and the concentrations of reactants and products. Since standard conditions in which the concentrations of all products and reactants are 1 M, The ΔG for the formation of ATP from ADP and ℗i under cellular conditions is the sum of the free-energy changes of its individual components.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The standard Gibbs free energy change for hydrolysis or pure ATP to pure ADP is -31KJ/mol....
The standard Gibbs free energy change for hydrolysis or pure ATP to pure ADP is -31KJ/mol. The reaction is written ATP = ADP +Pi. What is the Gibbs energy of reaction in an environment at 37 C in which the ATP, ADP, and Pi concentrations are all 1mmol/L or 1 µmol/L?
The standard free energy change for ATP hydrolysis is -30.5 kJ/mol. Therefore, the free energy change...
The standard free energy change for ATP hydrolysis is -30.5 kJ/mol. Therefore, the free energy change for this reaction in a cell in which the concentration of ATP, ADP, and Pi are 3.1 mM, 2.2 mM and 6.8 mM, respectively, and assuming a physiologically relevant temperature (37 °C), is: Answer -44.25 kJ/mol explain
It’s demanding to measure the standard free-energy change associated with the hydrolysis of ATP because the...
It’s demanding to measure the standard free-energy change associated with the hydrolysis of ATP because the minute amount of ATP remaining at equilibrium is difficult to measure accurately. The value of ΔG'º can be calculated indirectly, however, from the equilibrium constants of two other reactions (the first of which should look familiar) that have less favorable equilibrium constants: glucose-6-phosphate + H2O à glucose + Pi                    Keq'=270 ATP + glucose à ADP + glucose-6-phosphate   Keq'=890 Using this information, calculate ΔG'º for...
If it costs 10.5 kcal/mol to “run” a particular cation ATPase “pump”, then what is the...
If it costs 10.5 kcal/mol to “run” a particular cation ATPase “pump”, then what is the minimum concentration of ATP required to provide just enough energy to run this ATPase? In other words, what does the concentration of ATP need to be so that the free energy of ATP hydrolysis is -10.5 kcal/mol. Report your answer to the nearest tenth of a mM, and assume that [\Delta] ΔG°' is -7.3 kcal/mol, the concentration of Pi is 3.4 mM, the concentration...
If it costs 9.9 kcal/mol to “run” the sarcoplasmic reticulum (SR) Ca ATPase (i.e., pumping one...
If it costs 9.9 kcal/mol to “run” the sarcoplasmic reticulum (SR) Ca ATPase (i.e., pumping one mol of Ca2+ ions from the cytoplasm to the sarcoplasmic reticulum of the muscle cell per 1 ATP hydrolyzed), then what is the minimum concentration of ATP required to provide just enough energy to run the SR Ca ATPase? In other words, what does the concentration of ATP need to be so that the free energy of ATP hydrolysis is -9.9 kcal/mol. Assume that...
The standard-state free energy change in oxidizing NADH with oxygen is -220 kJ/mol (-52.6 kcal/mol). If...
The standard-state free energy change in oxidizing NADH with oxygen is -220 kJ/mol (-52.6 kcal/mol). If we accept this value as representative of the actual free energy released (ΔG), which is not necessarily the case (see previous problem), then how many ATPs could potentially be synthesized per NADH oxidized if the cost of ATP synthesis was 11.4 kcal/mol? Report your answer to the nearest tenths.
To answer this question, please reference the Problem Solving Video: Free Energy, ATP, and Creatine in...
To answer this question, please reference the Problem Solving Video: Free Energy, ATP, and Creatine in Resting Muscles. Suppose a sprinter's muscle tissue contains creatine phosphate at a concentration of 120 mM after dietary supplementation. The sprinter's muscle tissue also contains 4 mM ATP, 0.013 mM ADP, and 13 mM creatine. Use the table of the standard free energies of hydrolysis of phosphorylated compounds and the given concentrations to calculate the free energy change, ΔG, of the creatine kinase reaction...
Creatine + ATP -------> Creatine phosphate + ADP The above equation has a standard free energy...
Creatine + ATP -------> Creatine phosphate + ADP The above equation has a standard free energy (∆G˚') of 12.6kJ/mol. Calculate the approximate ratio of Creatine to Creatine Phosphate, when the ATP to ADP ratio is 10:1. Assume standard biochemical conditions of pH 7.0 and temperature of 25˚C
Subject: Cell Biology Why do some books state that the standard free energy for the hydrolysis...
Subject: Cell Biology Why do some books state that the standard free energy for the hydrolysis of the gamma-phosphate group (the one furthest from the ribose) of ATP is different from the standard free energy change for the hydrolysis of the beta phosphate group (the middle phosphate group)? (my textbook shows the same standard free energy change for the hydrolysis of these two groups and that the textbook uses kcal/mol as the unit for free energy (some textbooks use kJ/mol)).
Now for some calculations. ATP formation is a nonspontaneous process. It requires energy input. Under standard...
Now for some calculations. ATP formation is a nonspontaneous process. It requires energy input. Under standard state conditions the delta Go’ is ~30 kJ/mol. If the best available measures in a particular tissue indicate cellular levels of ATP= 2.5 mM, ADP = 0.6 mM and Pi =0.2 mM, what value will you report as the delta G naught’ for ATP synthesis? Show all work