Question

correlate the length of an ETC and the carriers in it with the magnitude of the...

correlate the length of an ETC and the carriers in it with the magnitude of the proton motive force it generates.

Homework Answers

Answer #1

The electron transport chain contains several components.
1. A semi-permeable membrane
2. Electron donor
3. Electron carriers
4. Electron acceptors
5. ATP synthase complex

The flow of electrons through electron carriers results in the pumping of protons across the membrane generating the proton gradient. This proton gradient is coupled to ATP synthesis by the ATP synthase complex.

If the length of ETC is longer, it can accommodate more electron carriers and can pump more protons across the membrane. As a result, more ATP can be produced.
i.e. there is a positive correlation between the length of ETC and the number of electron carriers to that of ATP yield.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A proton and electron are separated by 3.5 nm. (Note: ke=8.99x109N.m2/C2) (a) What is the magnitude...
A proton and electron are separated by 3.5 nm. (Note: ke=8.99x109N.m2/C2) (a) What is the magnitude of the force on the electron? (b) What is the magnitude of the force on the proton? (c) What is the electric field of the proton at the electron position?
1. Pick out an industry (automobile, airline, utilities, cell phone carriers, etc). Answer the three questions...
1. Pick out an industry (automobile, airline, utilities, cell phone carriers, etc). Answer the three questions for this industry. Do the answers indicate that this industry is competitive or monopoly, or might it be some other market structure?
A laboratory electromagnet produces a magnetic field of magnitude 1.49 T. A proton moves through this...
A laboratory electromagnet produces a magnetic field of magnitude 1.49 T. A proton moves through this field with a speed of 5.88 ✕ 106 m/s. (a) Find the magnitude of the maximum magnetic force that could be exerted on the proton. ____N (b) What is the magnitude of the maximum acceleration of the proton? ____m/s2 (c) Would the field exert the same magnetic force on an electron moving through the field with the same speed? (Assume that the electron is...
A laboratory electromagnet produces a magnetic field of magnitude 1.39 T. A proton moves through this...
A laboratory electromagnet produces a magnetic field of magnitude 1.39 T. A proton moves through this field with a speed of 6.16 106 m/s. (a) Find the magnitude of the maximum magnetic force that could be exerted on the proton. N (b) What is the magnitude of the maximum acceleration of the proton? m/s2 (c) Would the field exert the same magnetic force on an electron moving through the field with the same speed? Yes No Explain. (d) Would the...
A laboratory electromagnet produces a magnetic field of magnitude 1.44 T. A proton moves through this...
A laboratory electromagnet produces a magnetic field of magnitude 1.44 T. A proton moves through this field with a speed of 5.98 ✕ 106 m/s. (a) Find the magnitude of the maximum magnetic force that could be exerted on the proton. N (b) What is the magnitude of the maximum acceleration of the proton? m/s2 (c) Would the field exert the same magnetic force on an electron moving through the field with the same speed? (Assume that the electron is...
A laboratory electromagnet produces a magnetic field of magnitude 1.60 T. A proton moves through this...
A laboratory electromagnet produces a magnetic field of magnitude 1.60 T. A proton moves through this field with a speed of 6.12 ? 106 m/s. (a) Find the magnitude of the maximum magnetic force that could be exerted on the proton. N (b) What is the magnitude of the maximum acceleration of the proton? m/s2 (c) Would the field exert the same magnetic force on an electron moving through the field with the same speed? (Assume that the electron is...
1a) Two identical positively charged particles experience electric forces of magnitude 209 N when they are...
1a) Two identical positively charged particles experience electric forces of magnitude 209 N when they are separated by 4 cm. Calculate the charge on each particle. b) Two electrons and a proton are placed on corners of a square with sides 25 cm. The proton is opposite the empty corner. What is the magnitude of the electric force on the proton?
A. What must the charge (sign and magnitude) of a particle of mass 1.45 g be...
A. What must the charge (sign and magnitude) of a particle of mass 1.45 g be for it to remain stationary when placed in a downward-directed electric field of magnitude 660 N/C ? Use 9.81 m/s2 for the magnitude of the acceleration due to gravity. B. What is the magnitude of an electric field in which the electric force on a proton is equal in magnitude to its weight? Use 1.67×10−27 kg for the mass of a proton, 1.60×10−19 C...
A proton is placed in a uniform electric field of 2600N/C . Calculate the magnitude of...
A proton is placed in a uniform electric field of 2600N/C . Calculate the magnitude of the electric force felt by the proton. Calculate the proton's acceleration. Calculate the proton's speed after 1.10 μs in the field, assuming it starts from rest.
When at rest, a proton experiences a net electromagnetic force of magnitude 9.0×10?13 Npointing in the...
When at rest, a proton experiences a net electromagnetic force of magnitude 9.0×10?13 Npointing in the positive x direction. When the proton moves with a speed of 1.4×106 m/s in the positive y direction, the net electromagnetic force on it decreases in magnitude to 7.5×10?13 N , still pointing in the positive x direction. Part A:Find the magnitude of the electric field. Part B: Find the direction of the electric field Part C: Find the magnitude of the magnetic field....
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT