Question

What is the equilibrium potential of chloride ions in a mammalian neuron when the ion concentration...

What is the equilibrium potential of chloride ions in a mammalian neuron when the ion concentration inside the cell is 10 mM and their concentration outside the cell is 140 mM? Give your answer in mV, rounded to the nearest hundredth.

Homework Answers

Answer #1

  • Given (Cl)o = 140 mM
  • (Cl)i = 10 mM
  • Temperature (of normal human) = 37℃ = 310 K
  • Z (for Cl) = -1

Eion = (8.31×310)/(-1 × 96500) ln (140/10)

Eion = - 0.0267 × ln 14 = 0.027 × 2.639 = - 0.07461 V or - 70.461 mV

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
If the potassium ion concentration outside the axon of a neuron was 10 mM, and the...
If the potassium ion concentration outside the axon of a neuron was 10 mM, and the membrane potential was −70 mV (inside of the axon negative relative to outside of the axon), what must be the concentration of potassium ions inside the axon? Assume no ion leakage (i.e., assume Donnan equilibrium conditions) and that other ions can be ignored. Assume also that the temperature is 37 °C.
Consider the transport of a potassium ion from the blood (where its concentration is about 4.5...
Consider the transport of a potassium ion from the blood (where its concentration is about 4.5 mM) into a Red Blood Cell that contains 140 mM K+ at a temperature of 298 K. The transmembrane potential is about 58 mV, inside negative relative to outside. What is the free-energy change for transport of potassium ions into a Red Blood Cell?
The concentration of K+ ions in the intracellular fluid of a nerve cell is approximately 361.669...
The concentration of K+ ions in the intracellular fluid of a nerve cell is approximately 361.669 mM, but in the extracellular fluid the K+ concentration is 20.15 mM. Given that the electric potential difference inside and outside the cell is given by φ (inside) - φ(outside) = –70.0 mV, calculate the Gibbs energy change (to the zeroth decimal place in Joules) for the transfer of 1.00 mol of K+ ion against the concentration gradient at 37.8oC.
At resting potential, the equilibrium voltage is maintained in part by chloride ions and other anions...
At resting potential, the equilibrium voltage is maintained in part by chloride ions and other anions inside the cell and by the action of the _____ - ______ pump. Because of the action of the pump, there is a higher concentration of _________ions inside the cell and a higher concentration of ___________ions outside the cell. A small depolarization of the cell results in rapid opening of voltage-gated _______ channels while the voltage-gated __________channels stay closed. ________ flows into the axon,...
When heart muscle is treated with external lithium ions, the ions pass through the cell membrane...
When heart muscle is treated with external lithium ions, the ions pass through the cell membrane and equilibrate. Muscle cells treated with 150 mM lithium chloride solution achieved a steady-state membrane potential of 40 mV (negative inside). Part A What was the intracellular lithium concentration?
Consider the transport of a potassium ion from the blood (where its concentration is about 4.5...
Consider the transport of a potassium ion from the blood (where its concentration is about 4.5 mM) into a Red Blood Cell that contains 140 mM K+ at a temperature of 298 K. The transmembrane potential is about 58 mV, inside negative relative to outside. a) What type of transport must be used to move potassium ions across the Red Blood Cell outer membrane? (Simple diffusion, Facilitated diffusion, or active transport) b)In terms of the functioning of the beta-adrenergic pathway,...
Consider a cell at steady state. The intracellular Cl- concentration is 10 mM, while the extracellular...
Consider a cell at steady state. The intracellular Cl- concentration is 10 mM, while the extracellular Cl- concentration is 108 mM when the chloride channels are closed. The electrical potential inside the cell is -65 mV, and the external potential is 0 mV. Calculate the electrochemical potential difference across the membrane. Assume R = 8.3144 J/mol K and T = 37C. When the chloride channels open, in which direction will the Cl- ions move?
Ions A and B in the Table below are both monovalent cations associated with a cell...
Ions A and B in the Table below are both monovalent cations associated with a cell with a membrane potential of -98 mV. Constants you may need to answer the questions associated with the Table are as follows: R = 0.002 kcal/mol o;     T = 310o;     F = 0.023 kcal/mol mV Ion ICF (mM) ECF (mM) A 14.5 96.8 B 105.6 3.2 What is Ion A’s equilibrium potential? (round to nearest whole number and give units) 2. What is the...
What is the membrane potential in millivolts due to Na+ ions if the extracellular concentration of...
What is the membrane potential in millivolts due to Na+ ions if the extracellular concentration of Na+ ions is 142 mM and the intracellular concentration of Na+ ions is 21 mM at 20 degrees Celsius? I got -48 mV but I wanted to double check my answer (the number and sign) because I wasn't sure if I did it right
8. Consider a neuron whose resting potential is -60 mV, and the EK = -100 mV...
8. Consider a neuron whose resting potential is -60 mV, and the EK = -100 mV and the ENa = +40 mV. (a) What is the driving force for Na+, and what is the driving force for K+ at the resting potential? Just give a number, don’t describe what a driving force is in words. (b) What is the relative resistance of the cell membrane for sodium and potassium (i.e. how many times greater or less than the RK must...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT