Question

Describe the formation of urine starting from the Renal Artery and returning to the renal vein....

Describe the formation of urine starting from the Renal Artery and returning to the renal vein. Please include the flow of filtrate and its pathway, along with the blood flow pathway. Further describe the function of the tubules and their responsibilities in detail.

Please be specific and detailed as possible.

Homework Answers

Answer #1

Introduction

Formation of urine is a process important for the whole organism. Not only acid-base balance is modulated by it, but also blood osmolarity, plasma composition and fluid volume, and thus it influences all cells in our body.

A healthy adult person produces 1.5-2 liters of urine per day and this process involves three basic mechanisms:

1) Glomerular filtration

2) Tubular reabsorption

3) Tubular secretion

Functional anatomy

The basic functional unit for the urine formation is called nephron. Very important is the arrangement of nephron: it begins with renal corpuscle (Malpighi) that consists of a glomerulus, which is supplied by afferent glomerular arteriole and drained by efferent glomerular arteriole, and Bowman’s capsule (capsula glomeruli, glomerular capsule). Renal tubules have three segments. The proximal tubule, in which we distinguish pars convoluta (initial section) and pars recta, loop of Henle (intermediate tubule), where can be recognized the descending limb and ascending limb (its proximal part is formed by a thick segment of the ascending limb), and distal convoluted tubule (which has conversely first pars recta and then the pars convoluta) that subsequently joins the collecting ducts.

Functional histology

Renal artery divides several times to form Glomerulus which are fenestrated capillaries without diaphragm that form important part of a renal filtration barrier. Blood flow and blood pressure in afferent and efferent arteriole is strictly regulated, which allows glomerular filtration into Bowman’s capsule. Visceral layer of Bowman’s capsule consists of podocytes and their pedicels that tightly fit to the basement membrane of capillaries. Parietal layer is formed by a single layer of simple squamous epithelium. The renal filtration barrier is composed of the fenestrated capillary endothelium, the basement membrane and the pedicles of podocytes. Pedicels interdigitate with one another forming filtration slits that are spanned by slit diaphragms (formed by protein nephrin). Due to its negative charge it prevents the filtration of plasma proteins.

In the glomerulus we can find mesangium that provides mechanical support, has the phagocytic activity and secrets prostaglandins. Mesangial cells outside the glomerulus together with the macula densa cells (distal segment of the ascending limb of loop of Henle) and the granular cells (modified smooth muscle cells of the afferent arteriole) from juxtaglomerular apparatus. This is the place where renal corpuscle gets into contact with the renal tubular system.

The proximal tubule is lined by simple cuboidal epithelium with a well-developed brush border on the luminal side, the thin portion of Henle’s loop is lined by a simple squamous epithelium (poor in organelles). The distal tubule cells are smaller than those of proximal tubule and lack the brush border. Collecting ducts consist of principal intercalated cells.

_

Glomerular filtration

The volume of liquid filtered per unit time in all glomeruli can be expressed as the glomerular filtration rate (GFR). Its physiological value is 120 ml/min/1,73m2 body surface area, thus 180 l/day. About 99 % of the filtrate gets reabsorbed by the tubular resorption to the extracellular fluid (back into the body), leaving only 1.5-2 l of urine per day. Movement of the fluid through the filtration membrane is controlled and determined by the ratio of the hydrostatic pressure in the capillaries and oncotic pressure of plasma proteins (less by the hydrostatic pressure of the interstitial fluid and oncotic pressure in the filtrate). These forces are called Starling´s forces and there are a few differences from the general principles:

1) Fluid is not exchanged between the capillary and the interstitium, but between the capillary and the fluid of Bowman’s capsule

2) Hydrostatic pressure in the capillaries is different, the movement is thus only one-sided (in the direction of filtration)

3) Filtration barrier (see above) has a unique structure and properties which do not allow passage of proteins into the filtrate (primary urine)

GFR is therefore dependent on the renal blood flow, the filtration pressure, the plasma oncotic pressure, and the size of the filtration area.

Tubular reabsorption and secretion

As we mentioned above, about 99 % of the filtrate gets reabsorbed by the tubular resorption to the extracellular fluid (back into the body), leaving only 1.5-2 l of urine per day. The main task for renal tubules is therefore an isosmotic tubular reabsorption of primary urine. They absorb water, ions (sodium, chlorides, potassium, calcium, magnesium, bicarbonate or phosphate), urea, glucose and amino acids. All of this is independent on the extracellular fluid volume in the body – we speak about the obligatory resorption. Its primary role is to maintain fluid volume in the body under normal conditions.

Transport can be carried by passive diffusion (in the direction of the concentration or electrical gradient), primary active transport against gradient (needs energy – ATP) or secondary active transport (transport protein uses the concentration gradient created by a primary active transport realized by other transport protein). Substances can be transported by paracellular or transcellular routes. Transport of water is always passive. Na+/K+-ATPase located on the basolateral membrane plays important role in the secondary active transport. It creates a concentration gradient for Na+. Transport proteins act as symporters (transport of compound is coupled to the transport of Na+ in the same direction) or antiporters (transport of compound is coupled to the transport of Na+ in the opposite direction). To understand the processes in the tubular system, we must imagine tubular epithelial cells, their apical membrane facing the tubular fluid (primary urine), basolateral membrane, on the other hand, is in contact with the peritubular fluid (here is located the Na+/K+-ATPase).

• The proximal tubule

Reabsorption of sodium ions is in the first half of the proximal tubule coupled with the reabsorption of bicarbonate, glucose, amino acids, lactate, urea and phosphate. Absorbed compounds are osmotically active, thereby draining water from tubules. This leads to an increased concentration of chloride ions in the tubular fluid that is very important for a resorption in other parts of the proximal tubule.

Reabsorption of bicarbonate ions in the proximal tubule

Movement of bicarbonate and hydrogen ions depends on the transport sodium ions. This process is catalyzed by enzyme carbonic anhydrase (located in the apical membrane and in the intracellular part of the epithelial cells). The first step is the secretion of H+ into the tubular fluid through the Na+/H+ antiport, located at the luminal (apical) membrane of proximal tubule cells. Transferred H+ may in the tubular fluid react with filtered bicarbonate ions to form carbonic acid. Carbonic anhydrase facilitates the decomposition of carbonic acid in the tubular fluid to water and carbon dioxide. Both compounds can freely diffuse into the tubule epithelial cells, where carbonic acid is restored by the carbonic anhydrase. Molecules of carbonic acid dissociates into hydrogen and bicarbonate ions. Bicarbonate ions then pass through the basolateral membrane into the interstitial fluid through Na+/3HCO3–-cotransporter or anion exchanger (Cl–/HCO3–). H+ returns via antiport with Na+ into the tubular fluid. For each secreted H+, Na+ and HCO3– is absorbed (Na+ is returned to the blood by active transport in exchange for K+ – Na+/K+-ATPase).

Renal (tubular) threshold

Glucose, amino acid and many other organic compounds are in this part of the tubule completely resorbed under physiological conditions. This transport has some maximum value – so-called renal/tubular threshold. As an example we can mention the renal threshold for glucose. When this renal threshold is exceeded (due to too high plasma concentration – such as 10 mmol/l for glucose), glucose reabsorption in the proximal tubule is incomplete and some amount of glucose remains in the final urine. Unabsorbed osmotically active molecules drain water molecules to renal tubules, thereby increasing diuresis (osmotic polyuria).

Reabsorption of sodium ions is in the second half of the proximal tubule coupled with the transport of chloride ions, used are both transcellular (on basolateral membrane helps K+/Cl–-symport) and paracellular routes. Relatively abundant positively charged ions (sodium, potassium, calcium, magnesium) in the tubular fluid accompany chloride ions in paracellular transport. Transport of ions is followed by passive reabsorption of water.

• Loop of Henle

Henle’s loop absorbs about 25 % of the solutes (thick segment of the ascending limb), but only about 15 % water (descending limb). Its proper function (thick part of the ascending limb is impermeable to water and has active transport of Na+ and Cl–) is essential for the formation of a high osmotic pressure (hyperosmolarity) in the renal medulla that ensures a production of highly concentrated urine. Some mechanisms of reabsorption of ions are similar to those in the proximal tubule. Very important is the specific symport of Na+, K+ and 2 Cl– across the apical membrane. This symport uses energy derived from the transport of sodium and chloride ions in the direction of their concentration gradient for the transport of potassium ions into the cell (against their concentration gradient). Some of these ions leave cells on the basolateral membrane (together with Cl–), some return back into the tubular fluid, thereby creating an electrical imbalance. Due to this, positively charged ions (Na+, K+, Ca2+, Mg2+) are resorbed by paracellular route (very important mechanism for resorption of solutes). This is especially significant for formation of a hypertonic renal medulla. Hypotonic fluid leaves the loop of Henle and enters the distal tubule.

• Distal convoluted tubule and collecting duct

Distal convoluted tubule and collecting duct resorbe about 7 % of solutes (mainly Na+ and Cl–) and approximately 17 % water. Their resorption is affected by hormones (e.g. ADH) – facultative resorption. Hydrogen and potassium ions are secreted here. The distal convoluted tubule and the collecting duct thus play an important role in the formation of the final urine and in the regulation of osmolarity and pH. Sodium and chloride ions are absorbed in the first part of the distal convoluted tubule. The distal part of the distal convoluted tubule and the collecting duct consist of two cell types:

1) Principal cells responsible for the resorption of sodium ions and water (dependent on ADH) and secretion of K+ ions

2) Intercalated cells containing carbonic anhydrase. They are involved in acid-base balance, because they can secrete both hydrogen and bicarbonate ions

About the intercalated cells – see subchapet about acid-base balance.

Calcium and phosphate reabsorption and secretion

Plasma concentration of total calcium is 2.25-2.75 mmol/l and for ionized calcium 1.1-1.4 mmol/l. Only ionized calcium (about 48 % of total) is filterable by kidneys. Resorption takes place by both active (15-20 %) and passive paracellular (80 %) mechanisms. It is localized in the proximal tubule, the ascending part of Henle’s loop and partially in the distal convoluted tubule. Parathyroid hormone stimulates the reabsorption by transcellular route in this segment. Calcitriol acts the same way, just mostly in the distal convoluted tubule. In contrast, calcitonin increases the excretion of calcium ions by inhibition of tubular reabsorption.

Serum phosphate concentration is 0.7-1.5 mmol/l, urine concentration is 15-90 mmol/l. Phosphates are also influenced by the parathyroid hormone (inhibits the resorption of phosphates) and by the calcitonin (also reduces the resorption of phosphates).

Control of urine osmolarity

There are several processes controlling the urine osmolarity. Excretion of excess water leads to a formation of hypotonic urine, excretion of excess solutes results in a formation of hypertonic urine.

1) Dilution of urine

a) The loop of Henle creates an osmotic gradient from the cortex to the hypertonic medulla (due to impermeability of the thick segment to water molecules and high reabsorption of solutes)

b) Production of ADH is reduced

c) Urea passes from the medulla into the tubular system, thereby reducing hypertonicity of the medulla

2) Production of hypertonic urine

a) The loop of Henle creates an osmotic gradient (hypertonic medulla); Na+, Cl– (see above) and urea play an important role – hypertonicity of the renal medulla reaches its maximum

b) Production of ADH is increased

c) Urea circulates in the renal medulla – increased hypertonicity of the medulla

Acid-base balance and kidneys

Role of our kidneys in acid-base balance is discussed in subchapter about acid-base balance.

Final urine

Final urine is characteristically malodorous, clear, golden yellow liquid. Its specific gravity varies between 1 003-1 038 kg/m3 and its pH between 4.4-8.0. It contains Na+ (100-250 mmol/l), K+ (25-100 mmol/l), Cl– (about 135 mmol/l), Ca2+, creatinine, vanillylmandelic acid (degradation product of catecholamines), uric acid, urea, etc. Healthy kidneys do not allow a significant amount of proteins and glucose to reach the final urine (they are almost completely reabsorbed). Presence of high amount of proteins and glucose in the final urine is a pathological finding. Normal diuresis is 1.5-2 l/day. Polyuria is diuresis higher than 2 l/day, oliguria lower than 0.5 l/day and anuria lower than 0.1 l/day.

Thus, blood free of nitrogenous waste goes in efferent arteriole and ultimately to Renal Vein.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1) Trace a drop of blood from the renal artery to the renal vein. Name all...
1) Trace a drop of blood from the renal artery to the renal vein. Name all the blood vessels. 2) How does filtrate form? What pressures are involved? What affect does each pressure have on formation? Trace a drop of filtrate from its formation to the point where it turns into urine. Explain ALL of the micro anatomy; and the physiology that occurs at each microanatomical structure along the way. 3) What would happen if HPg dropped by 16mm Hg?...
  Describe the path of blood from the hepatic portal vein through to the renal artery. Explain...
  Describe the path of blood from the hepatic portal vein through to the renal artery. Explain how the blood chemistry changes through its path
The Efferent arteriole supplies blood to: Renal artery Renal vein Peritubular capillaries Interlobular artery Antidiuretic hormone...
The Efferent arteriole supplies blood to: Renal artery Renal vein Peritubular capillaries Interlobular artery Antidiuretic hormone ADH is produced and secreted from: Pituitary gland Adrenal cortex Pancreas Kidney Water is reabsorbed by renal tubule through the process of: Diffusion Filtration Osmosis Reverse osmosis During urine formation, movement of substances from plasma to renal tubule is called: Secretion Reabsorption Osmosis Diffusion When concentration of water in body fluids such as blood increases, secretion of ADH _____________: Increases Decreases Stays same Is...
Urinary System Tract. Trace a molecule of water starting from the renal artery, into a nephron,...
Urinary System Tract. Trace a molecule of water starting from the renal artery, into a nephron, and ending in the urethra. a. Name each vessel, tubule, etc. that it passes through. b. At what point is this molecule considered part of the blood versus filtrate versus tubular fluid versus urine?
Physiology Answers can be explained thoroughly in jot note format or paragraphs. Renal System 1. Describe...
Physiology Answers can be explained thoroughly in jot note format or paragraphs. Renal System 1. Describe (include the hormonal control) how water is being reabsorbed from the filtrate into the peritubular circulation.   Respiratory system 2. Under resting conditions, approximately 25% of the oxygen is extracted from the oxygenated blood into the tissues to maintain their basal metabolic need.  Describe (with all the possible mechanisms) how an individual can increase the unloading of oxygen from the oxygenated blood into the working tissues...
1.Which of the following is a primary function of the distal convoluted tubule? a.conduction of urine...
1.Which of the following is a primary function of the distal convoluted tubule? a.conduction of urine to the minor calices b.reabsorption of vital nutrients from the tubular fluid c. filtration of plasma to initiate urine formation d.active secretion of ions, acids, drugs, and toxins 2.The primary function of the proximal convoluted tubule is a.secretion of acids, ammonia, and drugs. b.absorption of ions, organic molecules, vitamins, and water. c.adjustment of urine volume in response to ADH and aldosterone. d.filtration of anything...
Assignment: What are the main arguments in the article? Please answer within 5 hours. It is...
Assignment: What are the main arguments in the article? Please answer within 5 hours. It is extremely urgent!!!!!!!!!!!!!!!!!!!!!!!! --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- BIOETHICS. Bioethics as a field is relatively new, emerging only in the late 1960s, though many of the questions it addresses are as old as medicine itself. When Hippocrates wrote his now famous dictum Primum non nocere (First, do no harm), he was grappling with one of the core issues still facing human medicine, namely, the role and duty of the...
What topics are covered in the following article? Please answer within 5 hours. It is extremely...
What topics are covered in the following article? Please answer within 5 hours. It is extremely urgent!!!!!!!!!!!!!!!!!!!!!!!! --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- BIOETHICS. Bioethics as a field is relatively new, emerging only in the late 1960s, though many of the questions it addresses are as old as medicine itself. When Hippocrates wrote his now famous dictum Primum non nocere (First, do no harm), he was grappling with one of the core issues still facing human medicine, namely, the role and duty of the physician....
Please read the article and answear about questions. Determining the Value of the Business After you...
Please read the article and answear about questions. Determining the Value of the Business After you have completed a thorough and exacting investigation, you need to analyze all the infor- mation you have gathered. This is the time to consult with your business, financial, and legal advis- ers to arrive at an estimate of the value of the business. Outside advisers are impartial and are more likely to see the bad things about the business than are you. You should...
Please answer the following Case analysis questions 1-How is New Balance performing compared to its primary...
Please answer the following Case analysis questions 1-How is New Balance performing compared to its primary rivals? How will the acquisition of Reebok by Adidas impact the structure of the athletic shoe industry? Is this likely to be favorable or unfavorable for New Balance? 2- What issues does New Balance management need to address? 3-What recommendations would you make to New Balance Management? What does New Balance need to do to continue to be successful? Should management continue to invest...