Question

The indicated function y1(x) is a solution of the associated homogeneous differential equation. Use the method...

The indicated function y1(x) is a solution of the associated homogeneous differential equation. Use the method of reduction of order to find a second solution y2(x) and a particular solution of the given nonhomoegeneous equation.

y'' − y'  = e^x

y1 = e^x

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order...
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2, y2 = y1(x) e−∫P(x) dx y 2 1 (x) dx     (5) as instructed, to find a second solution y2(x). y'' + 36y = 0;    y1 = cos(6x) y2 = 2) The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2, y2 = y1(x) e−∫P(x) dx y 2 1...
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order,...
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order, to find a second solution dx **Please do not solve this via the formula--please use the REDUCTION METHOD ONLY. y2(x)= ?? Given: y'' + 2y' + y = 0;    y1 = xe−x
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order...
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2, y2 = y1(x) e−∫P(x) dx y 2 1 (x) dx        (5) as instructed, to find a second solution y2(x). y'' + 64y = 0;    y1 = cos(8x) y2 =
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order...
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2, y2 = y1(x) ∫(e(−∫P(x) dx))/y12(x)dx (5) as instructed, to find a second solution y2(x).4x2y'' + y = 0; y1 = x1/2 ln(x) y2 = ?
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order...
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2, y2 = y1(x) e−∫P(x) dx y 2 1 (x)       dx (5) as instructed, to find a second solution y2(x). x2y'' -11xy' + 36y = 0; y1 = x6 y2 =
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order...
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2, y2 = y1(x) e−∫P(x) dx y 2 1 (x) dx (5) as instructed, to find a second solution y2(x). y'' + 100y = 0; y1 = cos 10x I've gotten to the point all the way to where y2 = u y1, but my integral is wrong for some reason This was my answer y2= c1((sin(20x)+20x)cos10x)/40 + c2(cos(10x))
the indicated function y1(x) is a solution of the associated homogeneous equation.use reduction of order formula....
the indicated function y1(x) is a solution of the associated homogeneous equation.use reduction of order formula. 1. (1-x^2)y''+2xy'=0; y1=1 2. 16y''-24y'+9y=0; y1= e^3x/4
The indicated functions are known linearly independent solutions of the associated homogeneous differential equation on (0,...
The indicated functions are known linearly independent solutions of the associated homogeneous differential equation on (0, ∞). Find the general solution of the given nonhomogeneous equation. x2y'' + xy' + y = sec(ln(x)) y1 = cos(ln(x)), y2 = sin(ln(x))
Use the METHOD of REDUCTION OF ORDER to find the general solution of the differential equation...
Use the METHOD of REDUCTION OF ORDER to find the general solution of the differential equation y"-4y=2 given that y1=e^-2x is a solution for the associated differential equation. When solving, use y=y1u and w=u'.
B. a non-homogeneous differential equation, a complementary solution, and a particular solution are given. Find a...
B. a non-homogeneous differential equation, a complementary solution, and a particular solution are given. Find a solution satisfying the given initial conditions. y''-2y'-3y=6 y(0)=3 y'(0) = 11 yc= C1e-x+C2e3x yp = -2 C. a third-order homogeneous linear equation and three linearly independent solutions are given. Find a particular solution satisfying the given initial conditions y'''+2y''-y'-2y=0, y(0) =1, y'(0) = 2, y''(0) = 0 y1=ex, y2=e-x,, y3= e-2x
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT