Question

y1 = 2 cos(x) − 1 is a particular solution for y'' + 4y = 6...

y1 = 2 cos(x) − 1 is a particular solution for y'' + 4y = 6 cos(x) − 4. y2 = sin(x) is a particular solution for y''+4y = 3 sin(x). Using the two particular solutions, find a particular solution for y''+4y = 2 cos(x)+sin(x)− 4/3 . Verify if the particular solution satisfies the given DE.

[Hint: Rewrite the right hand of this equation in terms of the given particular solutions to get the particular solution] Verify if the particular solution you found satisfies the equation y'' + 4y = 2 cos(x) + sin(x) − 4/3 . If it doesn’t verify, conclude that a particular solution does not exist.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the equation y'' + 4y = 0. a) Justify why the functions y1 = cos(4t)...
Consider the equation y'' + 4y = 0. a) Justify why the functions y1 = cos(4t) and y2 = sin(4t) do not constitute a fundamental set of solutions of the above equation. b) Find y1, y2 that constitute a fundamental set of solutions, justifying your answer.
Verify that the functions y1 = cos x − cos 2x and y2 = sin x...
Verify that the functions y1 = cos x − cos 2x and y2 = sin x − cos 2x both satisfy the differential equation y′′ + y = 3 cos 2x.
Show that the given functions y1 and y2 are solutions to the DE. Then show that...
Show that the given functions y1 and y2 are solutions to the DE. Then show that y1 and y2 are linearly independent. write the general solution. Impose the given ICs to find the particular solution to the IVP. y'' + 25y = 0; y1 = cos 5x; y2 = sin 5x; y(0) = -2; y'(0) = 3.
Given that y1=e3x is a solution of the DE y′′−4y′+3y=0 . Using the reduction of order...
Given that y1=e3x is a solution of the DE y′′−4y′+3y=0 . Using the reduction of order method a second solution of the equation is y2=uy1 where u is ?
1. For each of these problems, (i) verify by direct substitution that y1 and y2 are...
1. For each of these problems, (i) verify by direct substitution that y1 and y2 are both solutions of the ODE, and (ii) find the particular solution in the form y(x) = c1y1(x) + c2y2(x) that satisfies the given initial conditions. (a) y''+5y'-6y=0, y1(x) = e^−6x , y2(x) = e^x , y(0)=2, y'(0)=1
The function y1(t) = t is a solution to the equation. t2 y'' + 2ty' -...
The function y1(t) = t is a solution to the equation. t2 y'' + 2ty' - 2y = 0, t > 0 Find another particular solution y2 so that y1 and y2 form a fundamental set of solutions. This means that, after finding a solution y2, you also need to verify that {y1, y2} is really a fundamental set of solutions.
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order...
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2, y2 = y1(x) e−∫P(x) dx y 2 1 (x) dx (5) as instructed, to find a second solution y2(x). y'' + 100y = 0; y1 = cos 10x I've gotten to the point all the way to where y2 = u y1, but my integral is wrong for some reason This was my answer y2= c1((sin(20x)+20x)cos10x)/40 + c2(cos(10x))
The nonhomogeneous equation t2 y′′−2 y=19 t2−1, t>0, has homogeneous solutions y1(t)=t2, y2(t)=t−1. Find the particular...
The nonhomogeneous equation t2 y′′−2 y=19 t2−1, t>0, has homogeneous solutions y1(t)=t2, y2(t)=t−1. Find the particular solution to the nonhomogeneous equation that does not involve any terms from the homogeneous solution. Enter an exact answer. Enclose arguments of functions in parentheses. For example, sin(2x). y(t)=
Find the function y1(t) which is the solution of 4y″+32y′+64y=0 with initial conditions y1(0)=1,y′1(0)=0. y1(t)=? Find...
Find the function y1(t) which is the solution of 4y″+32y′+64y=0 with initial conditions y1(0)=1,y′1(0)=0. y1(t)=? Find the function y2(t) which is the solution of 4y″+32y′+64y=0 with initial conditions y2(0)=0, y′2(0)=1. y2(t)= ? Find the Wronskian of these two solutions you have found: W(t)=W(y1,y2). W(t)=?
In this problem verify that the given functions y1 and y2 satisfy the corresponding homogeneous equation....
In this problem verify that the given functions y1 and y2 satisfy the corresponding homogeneous equation. Then find a particular solution of the nonhomogeneous equation. x^2y′′−3xy′+4y=31x^2lnx, x>0, y1(x)=x^2, y2(x)=x^2lnx. Enter an exact answer.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT