Question

Define the relation S on RxR by (x,y)S(a,b) if and only if x^2 + y^2= a^2...

Define the relation S on RxR by (x,y)S(a,b) if and only if x^2 + y^2= a^2 + b^2.

a) Prove S in an equivalence relation

b) compute [(0,0)], [(1,2)], and [(-3,4)].

c) Draw a picture in R^2 representing these three equivalence classes.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Define a relation R on Z by aRb if and only if |a| = |b|. a)...
Define a relation R on Z by aRb if and only if |a| = |b|. a) Prove R is an equivalence relation b) Compute [0] and [n] for n in Z with n different than 0.
For natural numbers x and y, define xRy if and only if x^2 + y is...
For natural numbers x and y, define xRy if and only if x^2 + y is even. Prove that R is an equivalence relation on the set of natural numbers and find the quotient set determined by R. What would the quotient set be? can this proof be explained in detail?
Write vectors in R2 as (x,y). Define the relation on R2 by writing (x1,y1) ∼ (x2,y2)...
Write vectors in R2 as (x,y). Define the relation on R2 by writing (x1,y1) ∼ (x2,y2) iff y1 − sin x1 = y2 − sin x2 . Prove that ∼ is an equivalence relation. Find the classes [(0, 0)], [(2, π/2)] and draw them on the plane. Describe the sets which are the equivalence classes for this relation.
1. Consider the relations R = {(x,y),(y,z),(z,x)} and S = {(y,x),(z,y),(x,z)} on {x, y, z}. a)...
1. Consider the relations R = {(x,y),(y,z),(z,x)} and S = {(y,x),(z,y),(x,z)} on {x, y, z}. a) Explain why R is not an equivalence relation. b) Explain why S is not an equivalence relation. c) Find S ◦ R. d) Show that S ◦ R is an equivalence relation. e) What are the equivalence classes of S ◦ R?
Define the relation τ on Z by aτ b if and only if there exists x...
Define the relation τ on Z by aτ b if and only if there exists x ∈ {1,4,16} such that ax ≡ b (mod 63). (a) Prove that τ is an equivalence relation. (b) Prove that there exists an integer n with 1 ≤ n ≤ 62 such that the equivalence class of n is{m ∈ Z | m ≡ n (mod 63)}.
Consider the relation R defined on the set R as follows: ∀x, y ∈ R, (x,...
Consider the relation R defined on the set R as follows: ∀x, y ∈ R, (x, y) ∈ R if and only if x + 2 > y. For example, (4, 3) is in R because 4 + 2 = 6, which is greater than 3. (a) Is the relation reflexive? Prove or disprove. (b) Is the relation symmetric? Prove or disprove. (c) Is the relation transitive? Prove or disprove. (d) Is it an equivalence relation? Explain.
Let R = {(x, y) | x − y is an integer} be a relation on...
Let R = {(x, y) | x − y is an integer} be a relation on the set Q of rational numbers. a) [6 marks] Prove that R is an equivalence relation on Q. b) [2 marks] What is the equivalence class of 0? c) [2 marks] What is the equivalence class of 1/2?
For each of the following, prove that the relation is an equivalence relation. Then give the...
For each of the following, prove that the relation is an equivalence relation. Then give the information about the equivalence classes, as specified. a) The relation ∼ on R defined by x ∼ y iff x = y or xy = 2. Explicitly find the equivalence classes [2], [3], [−4/5 ], and [0] b) The relation ∼ on R+ × R+ defined by (x, y) ∼ (u, v) iff x2v = u2y. Explicitly find the equivalence classes [(5, 2)] and...
On set R2 define ∼ by writing(a,b)∼(u,v)⇔ 2a−b = 2u−v. Prove that∼is an equivalence relation on...
On set R2 define ∼ by writing(a,b)∼(u,v)⇔ 2a−b = 2u−v. Prove that∼is an equivalence relation on R2 In the previous problem: (1) Describe [(1,1)]∼. (That is formulate a statement P(x,y) such that [(1,1)]∼ = {(x,y) ∈ R2 | P(x,y)}.) (2) Describe [(a, b)]∼ for any given point (a, b). (3) Plot sets [(1,1)]∼ and [(0,0)]∼ in R2.
(9 marks) Define the relation τ on Z by a τ b if and only if...
Define the relation τ on Z by a τ b if and only if there exists x ∈ {1, 4, 16} such that ax ≡ b (mod 63). (a) Prove that τ is an equivalence relation. (b) Prove that there exists an integer n with 1 ≤ n ≤ 62 such that the equivalence class of n is {m ∈ Z | m ≡ n (mod 63)}.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT