Question

the indicated function y1(x) is a solution of the associated homogeneous equation.use reduction of order formula....

the indicated function y1(x) is a solution of the associated homogeneous equation.use reduction of order formula.
1. (1-x^2)y''+2xy'=0; y1=1

2. 16y''-24y'+9y=0; y1= e^3x/4

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order...
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2, y2 = y1(x) e−∫P(x) dx y 2 1 (x) dx     (5) as instructed, to find a second solution y2(x). y'' + 36y = 0;    y1 = cos(6x) y2 = 2) The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2, y2 = y1(x) e−∫P(x) dx y 2 1...
The indicated function y1(x) is a solution of the associated homogeneous differential equation. Use the method...
The indicated function y1(x) is a solution of the associated homogeneous differential equation. Use the method of reduction of order to find a second solution y2(x) and a particular solution of the given nonhomoegeneous equation. y'' − y'  = e^x y1 = e^x
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order...
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2, y2 = y1(x) e−∫P(x) dx y 2 1 (x) dx        (5) as instructed, to find a second solution y2(x). y'' + 64y = 0;    y1 = cos(8x) y2 =
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order...
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2, y2 = y1(x) e−∫P(x) dx y 2 1 (x)       dx (5) as instructed, to find a second solution y2(x). x2y'' -11xy' + 36y = 0; y1 = x6 y2 =
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order...
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2, y2 = y1(x) ∫(e(−∫P(x) dx))/y12(x)dx (5) as instructed, to find a second solution y2(x).4x2y'' + y = 0; y1 = x1/2 ln(x) y2 = ?
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order,...
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order, to find a second solution dx **Please do not solve this via the formula--please use the REDUCTION METHOD ONLY. y2(x)= ?? Given: y'' + 2y' + y = 0;    y1 = xe−x
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order...
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2, y2 = y1(x) e−∫P(x) dx y 2 1 (x) dx (5) as instructed, to find a second solution y2(x). y'' + 100y = 0; y1 = cos 10x I've gotten to the point all the way to where y2 = u y1, but my integral is wrong for some reason This was my answer y2= c1((sin(20x)+20x)cos10x)/40 + c2(cos(10x))
($4.2 Reduction of Order): (a) Let y1(x) = x be a solution of the homogeneous ODE...
($4.2 Reduction of Order): (a) Let y1(x) = x be a solution of the homogeneous ODE xy′′ −(x+2)y′ + ((x+2)/x)y = 0. Use the reduction of order to find a second solution y2(x), and write the general solution.
Verify that the given function is a solution and use Reduction of Order to find a...
Verify that the given function is a solution and use Reduction of Order to find a second linearly independent solution. a. x2y′′ −2xy′ −4y = 0, y1(x) = x4. b. xy′′ − y′ + 4x3y = 0, y1(x) = sin(x2).
The indicated functions are known linearly independent solutions of the associated homogeneous differential equation on (0,...
The indicated functions are known linearly independent solutions of the associated homogeneous differential equation on (0, ∞). Find the general solution of the given nonhomogeneous equation. x2y'' + xy' + y = sec(ln(x)) y1 = cos(ln(x)), y2 = sin(ln(x))
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT