Question

y''− (2/ x^2)* y = 3− (2 /x^2), y(1) = 2 y'(1) = −3 Use the...

y''− (2/ x^2)* y = 3− (2 /x^2), y(1) = 2 y'(1) = −3 Use the method variation of constants to find a particular solution of the non homogeneous and then solve the ivp

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
) Solve the differential equation dydt= cos⁡(t)y+sin(t) using either the method of variation of parameters or...
) Solve the differential equation dydt= cos⁡(t)y+sin(t) using either the method of variation of parameters or the method of integration factor. Clearly identify the integration factor or parameter v(t) used (depending on which method you use). Also identify the solution to the homogeneous equation, and the particular solution. The use your solution to find the solution to the IVP obtained by adding the initial condition y(0) = 1.
Consider the IVP (x^2 - 2x)dy/dx = (x-2)y + x^2, y(1)=-2. Solve the IVP. Give the...
Consider the IVP (x^2 - 2x)dy/dx = (x-2)y + x^2, y(1)=-2. Solve the IVP. Give the largest interval over which the solution is defined.
Solve the IVP: , y(0)=3. 2) Solve the DE: . y' = xy^2/ (x^2 +1)
Solve the IVP: , y(0)=3. 2) Solve the DE: . y' = xy^2/ (x^2 +1)
Solve the non-homogeneous DE: y'' + 2 y' = et+ 3 using variation of parameters.
Solve the non-homogeneous DE: y'' + 2 y' = et+ 3 using variation of parameters.
Use the method for solving homogeneous equations to solve the following differential equation. (9x^2-y^2)dx+(xy-x^3y^-1)dy=0 solution is...
Use the method for solving homogeneous equations to solve the following differential equation. (9x^2-y^2)dx+(xy-x^3y^-1)dy=0 solution is F(x,y)=C, Where C= ?
a) Let y be the solution of the equation y ′ − [(3x^2*y)/(1+x^3)]=1+x^3 satisfying the condition  y...
a) Let y be the solution of the equation y ′ − [(3x^2*y)/(1+x^3)]=1+x^3 satisfying the condition  y ( 0 ) = 1. Find y ( 1 ). b) Let y be the solution of the equation y ′ = 4 − 2 x y satisfying the condition y ( 0 ) = 0. Use Euler's method with the horizontal step size  h = 1/2 to find an approximation to the value of the function y at x = 1. c) Let y...
solve non-homogeneous de y" - y' - 2y = 6x + 5 -2e^x by finding- the...
solve non-homogeneous de y" - y' - 2y = 6x + 5 -2e^x by finding- the solution yh(x) to the equivalent homogeneous de the particular solution yp(x) using undetermined coefficients the general solution y(x) = yh(x) + yp(x) of the de
Solve the Homogeneous differential equation (7 y^2 + 1 xy)dx - 1 x^2 dy = 0...
Solve the Homogeneous differential equation (7 y^2 + 1 xy)dx - 1 x^2 dy = 0 (a) A one-parameter family of solution of the equation is y(x) = (b) The particular solution of the equation subject to the initial condition y(1) =1/7.
Solve the following differential equation by variation of parameters. Fully evaluate all integrals. y′′+9y=sec(3x). a. Find...
Solve the following differential equation by variation of parameters. Fully evaluate all integrals. y′′+9y=sec(3x). a. Find the most general solution to the associated homogeneous differential equation. Use c1 and c2 in your answer to denote arbitrary constants, and enter them as c1 and c2. b. Find a particular solution to the nonhomogeneous differential equation y′′+9y=sec(3x). c. Find the most general solution to the original nonhomogeneous differential equation. Use c1 and c2 in your answer to denote arbitrary constants.
consider ivp given by x^2y" + 2xy' - 6y = 0 w/ y(1) = 1, y'(1)...
consider ivp given by x^2y" + 2xy' - 6y = 0 w/ y(1) = 1, y'(1) = 2 verify y(x) = x^2 and y(x) = x^-3 are solutions use wronskian to show both y(x) above are linearly independent find unique solution to ivp