Question

If G is a group of order 250,000 = 2 456, show that G is not...

If G is a group of order 250,000 = 2 456, show that G is not simple

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let G be a group. g be an element of G. if <g^2>=<g^4> show that order...
Let G be a group. g be an element of G. if <g^2>=<g^4> show that order of g is finite.
Let G be a group of order p^2, where p is a prime. Show that G...
Let G be a group of order p^2, where p is a prime. Show that G must have a subgroup of order p. please show with notation if possible
suppose every element of a group G has order dividing 2. Show that G is an...
suppose every element of a group G has order dividing 2. Show that G is an abelian group. There is another question on this, but I can't understand the writing at all...
Show that no group of order 992=2^5 * 31 is simple.
Show that no group of order 992=2^5 * 31 is simple.
let G be a finite group of even order. Show that the equation x^2=e has even...
let G be a finite group of even order. Show that the equation x^2=e has even number of solutions in G
Show that a group of order 84 cannot be simple.
Show that a group of order 84 cannot be simple.
Let G be a non-abelian group of order p^3 with p prime. (a) Show that |Z(G)|...
Let G be a non-abelian group of order p^3 with p prime. (a) Show that |Z(G)| = p. (b) Suppose a /∈ Z(G). Show that |NG(a)| = p^2 . (c) Show that G has exactly p 2 +p−1 conjugacy classes (don’t forget to count the classes of the elements of Z(G)).
Use Sylow Theorems: Show that every group of order 144 is not simple.
Use Sylow Theorems: Show that every group of order 144 is not simple.
(A) Show that if a2=e for all elements a in a group G, then G must...
(A) Show that if a2=e for all elements a in a group G, then G must be abelian. (B) Show that if G is a finite group of even order, then there is an a∈G such that a is not the identity and a2=e. (C) Find all the subgroups of Z3×Z3. Use this information to show that Z3×Z3 is not the same group as Z9. (Abstract Algebra)
Show that if G is a group, H a subgroup of G with |H| = n,...
Show that if G is a group, H a subgroup of G with |H| = n, and H is the only subgroup of G of order n, then H is a normal subgroup of G. Hint: Show that aHa-1 is a subgroup of G and is isomorphic to H for every a ∈ G.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT