Question

Let M = { f: ℝ  → ℝ | f is continuous } be the ring of...

Let M = { f: ℝ  → ℝ | f is continuous } be the ring of all continuous functions from the real numbers to the real numbers. Let a be any real number and define the following function:

Φa:M→R

f(x)↦f(a)

This is called the evaluation homomorphism.
1. Describe the kernel of the evaluation homomorphism.
2. Is the kernel of the evaluation homomorphism a prime ideal or a maximal ideal or both or neither?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let B = { f: ℝ  → ℝ | f is continuous } be the ring of...
Let B = { f: ℝ  → ℝ | f is continuous } be the ring of all continuous functions from the real numbers to the real numbers. Let a be any real number and define the following function: Φa:B→R f(x)↦f(a) It is called the evaluation homomorphism. (a) Prove that the evaluation homomorphism is a ring homomorphism (b) Describe the image of the evaluation homomorphism. (c) Describe the kernel of the evaluation homomorphism. (d) What does the First Isomorphism Theorem for...
If R is the ring of all real valued continuous functions defined on the closed interval...
If R is the ring of all real valued continuous functions defined on the closed interval [0,1] and if M = { f(x) belongs to R : f(1/3) = 0}. Show that M is a maximal ideal of R
Let P be a commutative PID (principal ideal domain) with identity. Suppose that there is a...
Let P be a commutative PID (principal ideal domain) with identity. Suppose that there is a surjective ring homomorphism f : P -> R for some (commutative) ring R. Show that every ideal of R is principal. Use this to list all the prime and maximal ideals of Z12.
4. (30) Let C be the ring of complex numbers,and letf:C→C be the map defined by...
4. (30) Let C be the ring of complex numbers,and letf:C→C be the map defined by f(z) = z^3. (i) Prove that f is not a homomorphism of rings, by finding an explicit counterex- ample. (ii) Prove that f is not injective. (iii) Prove that the principal ideal I = 〈x^2 + x + 1〉 is not a prime ideal of C[x]. (iv) Determine whether or not the ring C[x]/I is a field.
Let I, M be ideals of the commutative ring R. Show that M is a maximal...
Let I, M be ideals of the commutative ring R. Show that M is a maximal ideal of R if and only if M/I is a maximal ideal of R/I.
Let ?=ℝℝ be the real vector space of functions from ℝR to ℝR. Define ??={?∈? |...
Let ?=ℝℝ be the real vector space of functions from ℝR to ℝR. Define ??={?∈? | ?(−?)=?(?) ∀?∈ℝ}Ve={f∈V | f(−x)=f(x) ∀x∈R} ??={?∈? | ?(−?)=−?(?) ∀?∈ℝ}.Vo={f∈V | f(−x)=−f(x) ∀x∈R}. a) Prove that ?=??⊕??V=Ve⊕Vo. b) Give the decomposition of the function ?(?)=??f(x)=ex according to the above direct sum.
Define G: ℝ → ℝ by the rule G(x) = 2 − 3x for each real...
Define G: ℝ → ℝ by the rule G(x) = 2 − 3x for each real number x. Prove that G is onto. Proof that G is onto: Let y be any real number. (Scratch work: On a separate piece of paper, solve the equation y = 2 − 3x for x. Enter the result - an expression in y - in the box below.) x=________ To finish the proof, we need to show (1) that x is a real...
Let f and g be continuous functions on the reals and let S={x in R |...
Let f and g be continuous functions on the reals and let S={x in R | f(x)>=g(x)} . Show that S is a closed set.
Let D ⊆ R, a ∈ D, let f, g : D −→ R be continuous...
Let D ⊆ R, a ∈ D, let f, g : D −→ R be continuous functions. If limx→a f(x) = f(a) and limx→a g(x) = g(a) with f(a) < g(a), then there exists δ > 0 such that x ∈ D, 0 < |x − a| < δ =⇒ f(x) < g(x).
A function f is said to be continuous on the _______ at x = c if...
A function f is said to be continuous on the _______ at x = c if lim x → c + f ( x ) = f ( c ). A function f is said to be continuous on the _______ at x = c if lim x → c − f ( x ) = f ( c ). A real number x is a _______ number for a function f if f is discontinuous at x or f...