Question

I'm studying Linear Algebra. A Matrix A is a 3*3 matrix and it has 3 linear...

I'm studying Linear Algebra.

A Matrix A is a 3*3 matrix and it has 3 linear independent eigenvectors. The Matrix B has the same eigenvectors (but not necessarily the same eigenvalues). I'm supposed to prove that AB=BA. I'm given a clue that says: ,, Is it possible to diagonal A and B?''. I want to be clear that the matrixes are not given.
Thank you.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let matrices A,B∈Mn×n(R). Show that if A and B are each similar to some diagonal matrix,...
Let matrices A,B∈Mn×n(R). Show that if A and B are each similar to some diagonal matrix, and also have the same eigenvectors (but not necessarily the same eigenvalues), then  AB=BA.
Linear Algebra Conceptual Questions • If a subset of a vector space is NOT a subspace,...
Linear Algebra Conceptual Questions • If a subset of a vector space is NOT a subspace, what are the four things that could go wrong? How could you check to see which of these four properties aren’t true for the subset? • Is it possible for two distinct eigenvectors to correspond to the same eigenvalue? • Is it possible for two distinct eigenvalues to correspond to the same eigenvector? • What is the minimum number of vectors required take to...
The matrix [−1320−69] has eigenvalues λ1=−1 and λ2=−3. Find eigenvectors corresponding to these eigenvalues. v⃗ 1=...
The matrix [−1320−69] has eigenvalues λ1=−1 and λ2=−3. Find eigenvectors corresponding to these eigenvalues. v⃗ 1= ⎡⎣⎢⎢ ⎤⎦⎥⎥ and v⃗ 2= ⎡⎣⎢⎢ ⎤⎦⎥⎥ Find the solution to the linear system of differential equations [x′1 x′2]=[−13 20−6 9][x1 x2] satisfying the initial conditions [x1(0)x2(0)]=[6−9]. x1(t)= ______ x2(t)= _____
Matrix A is given as A = 0 2 −1 −1 3 −1 −2 4 −1...
Matrix A is given as A = 0 2 −1 −1 3 −1 −2 4 −1    a) Find all eigenvalues of A. b) Find a basis for each eigenspace of A. c) Determine whether A is diagonalizable. If it is, find an invertible matrix P and a diagonal matrix D such that D = P^−1AP. Please show all work and steps clearly please so I can follow your logic and learn to solve similar ones myself. I...
LINEAR ALGEBRA For the matrix B= 1 -4 7 -5 0 1 -4 3 2   ...
LINEAR ALGEBRA For the matrix B= 1 -4 7 -5 0 1 -4 3 2    -6 6    -4 Find all x in R^4 that are mapped into the zero vector by the transformation Bx. Does the vector: 1 0 2 belong to the range of T? If it does, what is the pre-image of this vector?
Prove that for a square n ×n matrix A, Ax = b (1) has one and...
Prove that for a square n ×n matrix A, Ax = b (1) has one and only one solution if and only if A is invertible; i.e., that there exists a matrix n ×n matrix B such that AB = I = B A. NOTE 01: The statement or theorem is of the form P iff Q, where P is the statement “Equation (1) has a unique solution” and Q is the statement “The matrix A is invertible”. This means...
Linear Algebra: Section 1.6 Applications Assume a corporation has a taxable income of $37,650,000. At this...
Linear Algebra: Section 1.6 Applications Assume a corporation has a taxable income of $37,650,000. At this income level, the federal income tax rate is 50%, the state income tax rate is 20%, and the local income tax is 10%. If each tax rate is applied to the total taxable income, the resulting tax liability for the corporation would be 80%. However it is customary to deduct taxes paid to one agency as expense before computing taxes for the other agencies....
Answer all of the questions true or false: 1. a) If one row in an echelon...
Answer all of the questions true or false: 1. a) If one row in an echelon form for an augmented matrix is [0 0 5 0 0] b) A vector b is a linear combination of the columns of a matrix A if and only if the equation Ax=b has at least one solution. c) The solution set of b is the set of all vectors of the form u = + p + vh where vh is any solution...
1.    In a multiple regression model, the following coefficients were obtained: b0 = -10      b1 =...
1.    In a multiple regression model, the following coefficients were obtained: b0 = -10      b1 = 4.5     b2 = -6.0 a.    Write the equation of the estimated multiple regression model. (3 pts) b     Suppose a sample of 25 observations produces this result, SSE = 480. What is the estimated standard error of the estimate? (5 pts) 2.    Consider the following estimated sample regression equation: Y = 12 + 6X1 -- 3 X2 Determine which of the following statements are true,...
Asia’s e-commerce landscape has been booming in recent years. The swift adoption of smartphones and greater...
Asia’s e-commerce landscape has been booming in recent years. The swift adoption of smartphones and greater access to the internet has allowed consumers in the region to be a major force in the global digital economy. The expansion looks set to continue at a rapid pace. According to a November 2018 report by Fitch Solutions, e-commerce sales in the region are forecast to increase by 14.2% this year, with an estimated average annual increase of 14% over the medium term...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT