Question

In the ring R[x] of polynomials with real coefficients, show that A = {f 2 R[x]...

In the ring R[x] of polynomials with real coefficients, show that A = {f 2 R[x] : f(0) = f(1) = 0} is an ideal.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let R[x] be the set of all polynomials (in the variable x) with real coefficients. Show...
Let R[x] be the set of all polynomials (in the variable x) with real coefficients. Show that this is a ring under ordinary addition and multiplication of polynomials. What are the units of R[x] ? I need a legible, detailed explaination
Let Z_2 [x] be the ring of all polynomials with coefficients in Z_2. List the elements...
Let Z_2 [x] be the ring of all polynomials with coefficients in Z_2. List the elements of the field Z_2 [x]/〈x^2+x+1〉, and make an addition and multiplication table for the field. For simplicity, denote the coset f(x)+〈x^2+x+1〉 by (f(x)) ̅.
If R is the ring of all real valued continuous functions defined on the closed interval...
If R is the ring of all real valued continuous functions defined on the closed interval [0,1] and if M = { f(x) belongs to R : f(1/3) = 0}. Show that M is a maximal ideal of R
Let P(R) denote the family of all polynomials (in a single variable x) with real coefficients....
Let P(R) denote the family of all polynomials (in a single variable x) with real coefficients. We have seen that with the operations of pointwise addition and multiplication by scalars, P(R) is a vector space over R. Consider the 2 linear maps D, I : P(R) to P(R), where D is differentiation and I is anti-differentiation. In detail, for a polynomial p = a0+a1x1+...+anxn, we have D(p) = a1+2a2x+....+nanxn-1 and I(p) = a0x+(a1/2)x2+...+(an/(n+1))xn+1. a. Show that D composed with I...
Let f(x) be a cubic polynomial of the form x^3 +ax^2 +bx+c with real coefficients. 1....
Let f(x) be a cubic polynomial of the form x^3 +ax^2 +bx+c with real coefficients. 1. Deduce that either f(x) factors in R[x] as the product of three degree-one polynomials, or f(x) factors in R[x] as the product of a degree-one polynomial and an irreducible degree-two polynomial. 2.Deduce that either f(x) has three real roots (counting multiplicities) or f(x) has one real root and two non-real (complex) roots that are complex conjugates of each other.
If V is a vector space of polynomials of degree n with real numbers as coefficients,...
If V is a vector space of polynomials of degree n with real numbers as coefficients, over R, and W is generated by the polynomials (x 3 + 2x 2 − 2x + 1, x3 + 3x 2 − x + 4, 2x 3 + x 2 − 7x − 7), then is W a subspace of V , and if so, determine its basis.
Let Z[x] be the ring of polynomials with integer coefficients. Find U(Z[x]), the set of all...
Let Z[x] be the ring of polynomials with integer coefficients. Find U(Z[x]), the set of all units of Z[x].
Let P2 denote the vector space of polynomials in x with real coefficients having degree at...
Let P2 denote the vector space of polynomials in x with real coefficients having degree at most 2. Let W be a subspace of P2 given by the span of {x2−x+6,−x2+2x−1,x+5}. Show that W is a proper subspace of P2.
Let P4 denote the space of polynomials of degree less than 4 with real coefficients. Show...
Let P4 denote the space of polynomials of degree less than 4 with real coefficients. Show that the standard operations of addition of polynomials, and multiplication of polynomials by a scalar, give P4 the structure of a vector space (over the real numbers R). Your answer should include verification of each of the eight vector space axioms (you may assume the two closure axioms hold for this problem).
In the ring R[x] of polynomials over R, is there any kind of analogous theorem to...
In the ring R[x] of polynomials over R, is there any kind of analogous theorem to the Fundamental theorem of Arithmetic?