Question

Let f be a continuous from a topological space X to the reals. Let a be...

Let f be a continuous from a topological space X to the reals. Let a be in the reals and let A = {x in X : f(x)=a} Show that A is closed inX.

Homework Answers

Answer #1

Answer :-

Topology is the study of the properties that are preserved through deformations, twistings, and stretchings of objects. Tearing, however, is not allowed. A circle is topologically equivalent to an ellipse (into which it can be deformed by stretching) and a sphere is equivalent to an ellipsoid.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let f and g be continuous functions on the reals and let S={x in R |...
Let f and g be continuous functions on the reals and let S={x in R | f(x)>=g(x)} . Show that S is a closed set.
1.- Prove the intermediate value theorem: let (X, τ) be a connected topological space, f: X...
1.- Prove the intermediate value theorem: let (X, τ) be a connected topological space, f: X - → Y a continuous transformation and x1, x2 ∈ X with a1 = f (x1), a2 = f (x2) ( a1 different a2). Then for all c∈ (a1, a2) there is x∈ such that f (x) = c. 2.- Let f: X - → Y be a continuous and suprajective transformation. Show that if X is connected, then Y too.
Let X be a topological space and A a subset of X. Show that there exists...
Let X be a topological space and A a subset of X. Show that there exists in X a neighbourhood Ox of each point x ∈ A such that A∩Ox is closed in Ox, if and only if A is an intersection of a closed set with an open set.
Suppose that f : X  → Y and g: X  → Y are continuous maps between topological spaces...
Suppose that f : X  → Y and g: X  → Y are continuous maps between topological spaces and that Y is Hausdorff. Show that the set A = {x ∈ X : f(x) = g(x)} is closed in X.
Prove or provide a counterexample Let (X,T) be a topological space, and let A⊆X. Then A...
Prove or provide a counterexample Let (X,T) be a topological space, and let A⊆X. Then A is dense iff Ext(A) =∅.
Let X be a topological space. Let S and T be topologies on X, where S...
Let X be a topological space. Let S and T be topologies on X, where S and T are not equal topologies. Suppose (X,S) is compact and (X,T) is Hausdorff. Prove that T is not contained in S.
Let X be a topological space. Let S and T be topologies on X, where S...
Let X be a topological space. Let S and T be topologies on X, where S and T are distinct topologies. Suppose (X,S) is compact and (X,T) is Hausdorff. Prove that T is not contained in S. how to solve?
If X, Y are topological spaces and f : X → Y we call the graph...
If X, Y are topological spaces and f : X → Y we call the graph of f the set Γf = {(x, f(x)); x ∈ X} which is a subset of X × Y. If X and Y are metric spaces and f is a continuous function prove that the graph of f is a closed set.
Let X and Y be metric spaces. Let f be a continuous function from X onto...
Let X and Y be metric spaces. Let f be a continuous function from X onto Y, that is the image of f is equal to Y. Show that if X is compact, then Y is compact
Let f be continuously differentiable function on the Reals with the following characteristics: - f(x) is...
Let f be continuously differentiable function on the Reals with the following characteristics: - f(x) is increasing from intervals (0,2) and (4,5) and decreasing everywhere else - f(x) > -1 on the interval (1,3) and f(x) < -1 everywhere else Suppose g(x) = 2f(x) + (f(x))^2. On which interval(s) is g(x) increasing?