Question

Let f(x) g(x) and h(x) be polynomials in R[x]. Show if gcd(f(x), g(x)) = 1 and...

Let f(x) g(x) and h(x) be polynomials in R[x].

Show if gcd(f(x), g(x)) = 1 and gcd(f(x), h(x)) = 1, then gcd(f(x), g(x)h(x)) = 1.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Let f : R2 → R2, f(x,y) = ?g(x,y),h(x,y)? where g,h : R2 → R....
1. Let f : R2 → R2, f(x,y) = ?g(x,y),h(x,y)? where g,h : R2 → R. Show that f is continuous at p0 ⇐⇒ both g,h are continuous at p0
Let f(x) and g(x) be polynomials and suppose that we have f(a) = g(a) for all...
Let f(x) and g(x) be polynomials and suppose that we have f(a) = g(a) for all real numbers a. In this case prove that f(x) and g(x) have exactly the same coefficients. [Hint: Consider the polynomial h(x) = f(x) − g(x). If h(x) has at least one nonzero coefficient then the equation h(x) = 0 has finitely many solutions.]
Let F be a field, and let f (x), g(x) ∈ F [x] be nonzero polynomials....
Let F be a field, and let f (x), g(x) ∈ F [x] be nonzero polynomials. Then it must be the case that deg(f (x)g(x)) = deg(f (x)) + deg(g(x)).
In the ring R[x] of polynomials with real coefficients, show that A = {f 2 R[x]...
In the ring R[x] of polynomials with real coefficients, show that A = {f 2 R[x] : f(0) = f(1) = 0} is an ideal.
Let R[x] be the set of all polynomials (in the variable x) with real coefficients. Show...
Let R[x] be the set of all polynomials (in the variable x) with real coefficients. Show that this is a ring under ordinary addition and multiplication of polynomials. What are the units of R[x] ? I need a legible, detailed explaination
Let f: R -> R and g: R -> R be differentiable, with g(x) ≠ 0...
Let f: R -> R and g: R -> R be differentiable, with g(x) ≠ 0 for all x. Assume that g(x) f'(x) = f(x) g'(x) for all x. Show that there is a real number c such that f(x) = cg(x) for all x. (Hint: Look at f/g.) Let g: [0, ∞) -> R, with g(x) = x2 for all x ≥ 0. Let L be the line tangent to the graph of g that passes through the point...
Let f : R → R be differentiable with derivative f'. Prove that f(x + h)...
Let f : R → R be differentiable with derivative f'. Prove that f(x + h) = f(x) + f'(x)h + o(h), as h → 0.
Show (-1,1)~R (where R= set of real numbers) by f(x)= x/(1-|x|) Use this to show g(x)=x/(d-|x|)...
Show (-1,1)~R (where R= set of real numbers) by f(x)= x/(1-|x|) Use this to show g(x)=x/(d-|x|) is also a bijection (i.e. g: (-d,d)->R) Finally consider h(x)= x + (a+b)/2 and show it is a bijection where h: (-d,d)->(a,b) Conclude: R~(a,b)
Let h(x) = f (g(x) − (x^2 + 1)) . If f(0) = 3, f(2) =...
Let h(x) = f (g(x) − (x^2 + 1)) . If f(0) = 3, f(2) = 5, f ' (0) = −5, f ' (2) = 11, g(1) = 2, and g ' (1) = 4. What is h(1) and h ' (1)?
1. (a) Let f(x) = exp(x),x ∈ R. Show that f is invertible and compute the...
1. (a) Let f(x) = exp(x),x ∈ R. Show that f is invertible and compute the derivative of f−1(y) in terms of y. [5] (b) find the Taylor series and radius of convergence for g(x) = log(1+ x) about x = 0. [6]