Question

Let F be the ring of all polynomial functions from to ?3 to ?3. a) Show...

Let F be the ring of all polynomial functions from to ?3 to ?3.

a) Show that F is a finite ring.

b) determine if F has zero divisors.

c) Show F is not isomorphic to ?3[?].

Please solve without solved without Fermat's Little Theorem

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let B = { f: ℝ  → ℝ | f is continuous } be the ring of...
Let B = { f: ℝ  → ℝ | f is continuous } be the ring of all continuous functions from the real numbers to the real numbers. Let a be any real number and define the following function: Φa:B→R f(x)↦f(a) It is called the evaluation homomorphism. (a) Prove that the evaluation homomorphism is a ring homomorphism (b) Describe the image of the evaluation homomorphism. (c) Describe the kernel of the evaluation homomorphism. (d) What does the First Isomorphism Theorem for...
Let A be a finite set and let f be a surjection from A to itself....
Let A be a finite set and let f be a surjection from A to itself. Show that f is an injection. Use Theorem 1, 2 and corollary 1. Theorem 1 : Let B be a finite set and let f be a function on B. Then f has a right inverse. In other words, there is a function g: A->B, where A=f[B], such that for each x in A, we have f(g(x)) = x. Theorem 2: A right inverse...
Suppose that R is a commutative ring without zero-divisors. Let x and y be nonzero elements....
Suppose that R is a commutative ring without zero-divisors. Let x and y be nonzero elements. 1. Suppose that x has infinite additive order. Show that y also has infinite additive order. 2. Suppose that the additive order of x is n. Show that the additive order of y is at most n. 3.Show that all the nonzero elements of R have the same additive order.
True or False, explain: 1. Any polynomial f in Q[x] with deg(f)=3 and no roots in...
True or False, explain: 1. Any polynomial f in Q[x] with deg(f)=3 and no roots in Q is irreducible. 2. Any polynomial f in Q[x] with deg(f)-4 and no roots in Q is irreducible. 3. Zx40 is isomorphic to Zx5 x Zx8 4. If G is a finite group and H<G, then [G:H] = |G||H| 5. If [G:H]=2, then H is normal in G. 6. If G is a finite group and G<S28, then there is a subgroup of G...
1. Let A = {1,2,3,4} and let F be the set of all functions f from...
1. Let A = {1,2,3,4} and let F be the set of all functions f from A to A. Prove or disprove each of the following statements. (a)For all functions f, g, h∈F, if f◦g=f◦h then g=h. (b)For all functions f, g, h∈F, iff◦g=f◦h and f is one-to-one then g=h. (c) For all functions f, g, h ∈ F , if g ◦ f = h ◦ f then g = h. (d) For all functions f, g, h ∈...
problem 2 In the polynomial ring Z[x], let I = {a0 + a1x + ... +...
problem 2 In the polynomial ring Z[x], let I = {a0 + a1x + ... + anx^n: ai in Z[x],a0 = 5n}, that is, the set of all polynomials where the constant coefficient is a multiple of 5. You can assume that I is an ideal of Z[x]. a. What is the simplest form of an element in the quotient ring z[x] / I? b. Explicitly give the elements in Z[x] / I. c. Prove that I is not a...
Let f(x) be a nonzero polynomial in F[x]. Show that f(x) is a unit in F[x]...
Let f(x) be a nonzero polynomial in F[x]. Show that f(x) is a unit in F[x] if and only if f(x) is a nonzero constant polynomial, that is, f(x) =c where 0F is not equal to c where c is a subset of F. Hence deduce that F[x] is not a field.
Define BA to be the set of all functions from A to B. Show that if...
Define BA to be the set of all functions from A to B. Show that if A and B are finite, then BA is finite
Let f ∈ Z[x] be a nonconstant polynomial with the property that all the roots (in...
Let f ∈ Z[x] be a nonconstant polynomial with the property that all the roots (in comlex plane) for the equation f(x) = 0 are distinct. Prove that there exist infinitely many positive integers n such that f(n) is not a perfect square. Could you explain it in number theory instead of some deep math like sigel theorem
Let M = { f: ℝ  → ℝ | f is continuous } be the ring of...
Let M = { f: ℝ  → ℝ | f is continuous } be the ring of all continuous functions from the real numbers to the real numbers. Let a be any real number and define the following function: Φa:M→R f(x)↦f(a) This is called the evaluation homomorphism. 1. Describe the kernel of the evaluation homomorphism. 2. Is the kernel of the evaluation homomorphism a prime ideal or a maximal ideal or both or neither?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT