Question

What is the highest possible dimension of a subspace of M_n (R) (set of n×n matrices...

What is the highest possible dimension of a subspace of M_n (R) (set of n×n matrices with real coefficients with its usual vector space structure) that only contains invertible matrices (and 0) ?

Homework Answers

Answer #1

the general linear group over set of real numbers  R  is the group of n×n invertible matrices of real numbers, and is denoted by GLn(R) or GL(n, R).So here we are asked to collect all invertible matrix that means all matrices with determinant zero.

You should notice that the determinant is a continuous mapf:M(n,R)≡Rn

f:M(n,R)≡Rn2→R,

Let us define map f(X) =det(X)  

Note that GL(n, R)= f^-1(R-{0})

And we know from real analysis that inverse image of open set under a continous map is open So from here it can be easily said that the pre-image by continuous map of open set is an open set then GL(n, R) will be an open subet of R^n2 this gives us idea that dimension(Gl(n, R) =n^2.

So dimension of desired subspace is n^2.

GL(n,R) is an open set.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove that the singleton set {0} is a vector subspace of the space P4(R) of all...
Prove that the singleton set {0} is a vector subspace of the space P4(R) of all polynomials of degree at most 3 with real coefficients.
We can identify the set V of all 3×3-matrices (real coefficients) with vector space R9. Show...
We can identify the set V of all 3×3-matrices (real coefficients) with vector space R9. Show that the set of all 3 × 3 symmetric matrices is a vector subspace of V .
Determine if the given set V is a subspace of the vector space W, where a)...
Determine if the given set V is a subspace of the vector space W, where a) V={polynomials of degree at most n with p(0)=0} and W= {polynomials of degree at most n} b) V={all diagonal n x n matrices with real entries} and W=all n x n matrices with real entries *Can you please show each step and little bit of an explanation on how you got the answer, struggling to learn this concept?*
Show that the set GLm,n(R) of all mxn matrices with the usual matrix addition and scalar...
Show that the set GLm,n(R) of all mxn matrices with the usual matrix addition and scalar multiplication is a finite dimensional vector space with dim GLm,n(R) = mn. Show that if V and W be finite dimensional vector spaces with dim V = m and dim W = n, B a basis for V and C a basis for W then hom(V,W)-----MatB--->C(-)--------> GLm,n(R) is a bijective linear transformation. Hence or otherwise, obtain dim hom(V,W). Thank you!
use the subspace theorem ( i) is it a non-empty space? ii) is it closed under...
use the subspace theorem ( i) is it a non-empty space? ii) is it closed under vector addition? iii)is it closed under scalar multiplication?) to decide whether the following is a real vector space with its usual operations: the set of all real polonomials of degree exactly n.
Consider P3 = {a + bx + cx2 + dx3 |a,b,c,d ∈ R}, the set of...
Consider P3 = {a + bx + cx2 + dx3 |a,b,c,d ∈ R}, the set of polynomials of degree at most 3. Let p(x) be an arbitrary element in P3. (a) Show P3 is a vector space. (b) Find a basis and the dimension of P3. (c) Why is the set of polynomials of degree exactly 3 not a vector space? (d) Find a basis for the set of polynomials satisfying p′′(x) = 0, a subspace of P3. (e) Find...
Prove that the set V of all polynomials of degree ≤ n including the zero polynomial...
Prove that the set V of all polynomials of degree ≤ n including the zero polynomial is vector space over the field R under usual polynomial addition and scalar multiplication. Further, find the basis for the space of polynomial p(x) of degree ≤ 3. Find a basis for the subspace with p(1) = 0.
Consider W as the set of all skew-symmetric matrices of size 3×3. Is it a vector...
Consider W as the set of all skew-symmetric matrices of size 3×3. Is it a vector space? If yes, then find its dimension and a basis.
Let V be a vector space of dimension n > 0, show that (a) Any set...
Let V be a vector space of dimension n > 0, show that (a) Any set of n linearly independent vectors in V forms a basis. (b) Any set of n vectors that span V forms a basis.
We have learned that we can consider spaces of matrices, polynomials or functions as vector spaces....
We have learned that we can consider spaces of matrices, polynomials or functions as vector spaces. For the following examples, use the definition of subspace to determine whether the set in question is a subspace or not (for the given vector space), and why. 1. The set M1 of 2×2 matrices with real entries such that all entries of their diagonal are equal. That is, all 2 × 2 matrices of the form: A = a b c a 2....
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT