Question

Suppose g : A → B and f : B → C where A = {1,...

Suppose g : A → B and f : B → C where A = {1, 2, 3, 4} B = {a, b, c} C = {3, 5, 7} and f and g are defined by g = {(1, c), (2, a), (3, b), (4, a)} f = {(a, 5), (b, 7), (c, 3)}.

a. Find f∘g

b. Find f-1

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose g: P → Q and f: Q → R where P = {1, 2, 3,...
Suppose g: P → Q and f: Q → R where P = {1, 2, 3, 4}, Q = {a, b, c}, R = {2, 7, 10}, and f and g are defined by f = {(a, 10), (b, 7), (c, 2)} and g = {(1, b), (2, a), (3, a), (4, b)}. (a) Is Function f and g invertible? If yes find f −1 and    g −1 or if not why? (b) Find f o g and g o...
Prob 5: i) Suppose f: R → Z where ?(?) =[2? - 1] a. If A...
Prob 5: i) Suppose f: R → Z where ?(?) =[2? - 1] a. If A = {x | 1 =< x =< 4}, find f(A). b. If C = {-9, -8}, find f−1(C). c. If D = {0.4, 0.5, 0.6}, find f−1(D). (ii) Suppose g: A → B and f: B → C where A = {a, b, c, d}, B = {1, 2, 3}, C = {2, 3, 6, 8}, and g and f are defined as g...
Suppose f(1) = −1, f(2) = 0, g(1) = 2, g(2) = 7, and f 0...
Suppose f(1) = −1, f(2) = 0, g(1) = 2, g(2) = 7, and f 0 (1) = 1, f0 (2) = 4, g0 (1) = 8, g0 (2) = −4. (a) Suppose h(x) = f(x^2 g(x)). Find h 0 (1). (b) Suppose j(x) = f(x) sin(x − 1). Find j 0 (1). (c) Suppose m(x) = ln(x)+arctan(x) e x+g(2x) . Find m0 (1).
For functions f and g, where f(x) = 1 + x 2 , g(x) = x...
For functions f and g, where f(x) = 1 + x 2 , g(x) = x − 1 in C[0, 1] with the inner product defined by the integral: hf , gi = Z 1 0 f(x)g(x)dx, (a) find the norm of f and g. (b) find unit vectors in the directions of f and g. (c) find the cosine of the angle θ between f and g. (d) find the orthogonal projection of f along g
1020) y=8/sqrt(4x^7)=Ax^B + C. y'=Kx^F + G. y'(9)=H. Find A,B,C,K,F,G,H. ans:7 1026) Find the derivative of...
1020) y=8/sqrt(4x^7)=Ax^B + C. y'=Kx^F + G. y'(9)=H. Find A,B,C,K,F,G,H. ans:7 1026) Find the derivative of y=(5x^(1/4) - 8x^(1/7))^3, when x=2. ans:1 1010) y=3x^2 + 2x + 5 and y'=Ax^2 + Bx + C. Find A,B,C. Next Question: y=(x^2)/7 + x/4 + 2 and y'=Hx^2 + Fx + G. Find H,F,G. ans:6
Define g(x) = f(x) + tan-1 (2x) on [−1, √3/2 ]. Suppose that both f'' and...
Define g(x) = f(x) + tan-1 (2x) on [−1, √3/2 ]. Suppose that both f'' and g'' are continuous for all x-values on [−1, √3/2 ]. Suppose that the only local extrema that f has on the interval [−1, √3/2 ] is a local minimum at x = 1/2 . (a) Determine the open intervals of increasing and decreasing for g on the interval [1/2 , √3/2] . (b) Suppose f(1/2) = 0 and f(√3/2) = 2. Find the absolute...
1)If f(x)=2x-2 and g(x)=3x+9, find the following. a) f(g(x))=? b) g(f(x))=? c) f(f(x))=? 2)Let f(x)=x^2 and...
1)If f(x)=2x-2 and g(x)=3x+9, find the following. a) f(g(x))=? b) g(f(x))=? c) f(f(x))=? 2)Let f(x)=x^2 and g(x)=6x-16. Find the following: a) f(3)+g(3)=? b) f(3)*g(3)=? c) f(g(3))=? d) g(f(3))=? 3) For g(x)=x^2+3x+4, find and simplify g(3+h)-g(3)=? Please break down in detail. Please and Thank you
Suppose that f(2) = −4, g(2) = 2, f '(2) = −5, and g'(2) = 1....
Suppose that f(2) = −4, g(2) = 2, f '(2) = −5, and g'(2) = 1. Find h'(2). a. h(x)=2f(x)-5g(x) h'(2)=? b. h(x)=f(x)g(x) h'(2)=? c. h(x)=f(x)/g(x) h'(2)=? d. h(x)=g(x)/1+f(x) h'(2)=?
Let f be the function defined by f(x)=cx−5x^2/2x^2+ax+b, where a, b, and c are constants. The...
Let f be the function defined by f(x)=cx−5x^2/2x^2+ax+b, where a, b, and c are constants. The graph of f has a vertical asymptote at x=1, and f has a removable discontinuity at x=−2. (a) Show that a=2 and b=−4. (b) Find the value of c. Justify your answer. (c) To make f continuous at x=−2, f(−2) should be defined as what value? Justify your answer. (d) Write an equation for the horizontal asymptote to the graph of f. Show the...
Suppose that f(2) = −3, g(2) = 4, f '(2) = −1, and g'(2) = 5....
Suppose that f(2) = −3, g(2) = 4, f '(2) = −1, and g'(2) = 5. Find h'(2). (a) h(x) = 3f(x) − 5g(x) h'(2) h(x) = f(x)g(x) h'(2) = h(x) = f(x) g(x) h'(2) =(d) h(x) = g(x) 1 + f(x) h'(2) =