Question

Use Induction to prove that 1 + 2 + 2^2 +.... + 2^n= 2^(n+1)-1 for n...

Use Induction to prove that 1 + 2 + 2^2 +.... + 2^n= 2^(n+1)-1 for n in N.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1) Prove by induction that 1-1/2 + 1/3 -1/4 + ... - (-1)^n /n is always...
1) Prove by induction that 1-1/2 + 1/3 -1/4 + ... - (-1)^n /n is always positive 2) Prove by induction that for all positive integers n, (n^2+n+1) is odd.
Use mathematical induction to prove that for each integer n ≥ 4, 5n ≥ 2 2n+1...
Use mathematical induction to prove that for each integer n ≥ 4, 5n ≥ 2 2n+1 + 100.
Prove by induction that 1*1! + 2*2! + 3*3! +... + n*n! = (n+1)! - 1...
Prove by induction that 1*1! + 2*2! + 3*3! +... + n*n! = (n+1)! - 1 for positive integer n.
Prove, using mathematical induction, that (1 + 1/ 2)^ n ≥ 1 + n /2 ,whenever...
Prove, using mathematical induction, that (1 + 1/ 2)^ n ≥ 1 + n /2 ,whenever n is a positive integer.
prove by induction that n(n+1)(n+2) is divisible by 6 for n=1,2...
prove by induction that n(n+1)(n+2) is divisible by 6 for n=1,2...
Use Mathematical Induction to prove that 3 | (n^3 + 2n) for all integers n =...
Use Mathematical Induction to prove that 3 | (n^3 + 2n) for all integers n = 0, 1, 2, ....
Discrete math Use mathematical induction to prove that n(n+5) is divisible by 2 for any positive...
Discrete math Use mathematical induction to prove that n(n+5) is divisible by 2 for any positive integer n.
Use mathematical induction to prove that 12+22+32+42+52+...+(n-1)2+n2= n(n+1)(2n+1)/6. (First state which of the 3 versions of...
Use mathematical induction to prove that 12+22+32+42+52+...+(n-1)2+n2= n(n+1)(2n+1)/6. (First state which of the 3 versions of induction: WOP, Ordinary or Strong, you plan to use.) proof: Answer goes here.
Use strong induction to prove that every natural number n ≥ 2 can be written as...
Use strong induction to prove that every natural number n ≥ 2 can be written as n = 2x + 3y, where x and y are integers greater than or equal to 0. Show the induction step and hypothesis along with any cases
Prove by induction. a ) If a, n ∈ N and a∣n then a ≤ n....
Prove by induction. a ) If a, n ∈ N and a∣n then a ≤ n. b) For any n ∈ N and any set S = {p1, . . . , pn} of prime numbers, there is a prime number which is not in S. c) Prove using strong induction that every natural number n > 1 is divisible by a prime.