Question

Exercise 6. Consider the following vectors in R3 . v1 = (1, −1, 0) v2 =...

Exercise 6. Consider the following vectors in R3 . v1 = (1, −1, 0) v2 = (3, 2, −1) v3 = (3, 5, −2 )   (a) Verify that the general vector u = (x, y, z) can be written as a linear combination of v1, v2, and v3. (Hint : The coefficients will be expressed as functions of the entries x, y and z of u.) Note : This shows that Span{v1, v2, v3} = R3 . (b) Can R3 be spanned by two vectors w1 and w2 ? Be sure to justify your answer. (Hint : Rephrase this question in terms of the consistency of a suitable linear system ).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Using MATLAB solve: The vectors v1=(1,-1,1), v2=(0,1,2), v3=(3,0,1) span R3. Express w=(x,y,z) as linear combination of...
Using MATLAB solve: The vectors v1=(1,-1,1), v2=(0,1,2), v3=(3,0,1) span R3. Express w=(x,y,z) as linear combination of v1,v2,v3.
Let {V1, V2,...,Vn} be a linearly independent set of vectors choosen from vector space V. Define...
Let {V1, V2,...,Vn} be a linearly independent set of vectors choosen from vector space V. Define w1=V1, w2= v1+v2, w3=v1+ v2+v3,..., wn=v1+v2+v3+...+vn. (a) Show that {w1, w2, w3...,wn} is a linearly independent set. (b) Can you include that {w1,w2,...,wn} is a basis for V? Why or why not?
Determine whether the given vectors span R3 V1=(-1,5,2), V2=(3,1,1), V3=(2,0,-2), V4=(4,1,0)
Determine whether the given vectors span R3 V1=(-1,5,2), V2=(3,1,1), V3=(2,0,-2), V4=(4,1,0)
Problem 6.4 What does it mean to say that a set of vectors {v1, v2, ....
Problem 6.4 What does it mean to say that a set of vectors {v1, v2, . . . , vn} is linearly dependent? Given the following vectors show that {v1, v2, v3, v4} is linearly dependent. Is it possible to express v4 as a linear combination of the other vectors? If so, do this. If not, explain why not. What about the vector v3? Anthony, Martin. Linear Algebra: Concepts and Methods (p. 206). Cambridge University Press. Kindle Edition.
2. Two vectors, ~v1 and ~v2. ~v1 has a length of 12 and is oriented at...
2. Two vectors, ~v1 and ~v2. ~v1 has a length of 12 and is oriented at an angle θ1 = 30o relative to the positive x−axis. ~v2 has a length of 6 and is oriented at an angle θ2 = 0o relative to the positive x−axis (it is aligned with the positive x−axis) a. What are the magnitude and direction (angle) of the sum of the two vectors ( 1+2 ~v = ~v1 + ~v2)? b. What are the magnitude...
1. Prove that if {⃗v1, ⃗v2, ⃗v3} is a linear dependent set of vectors in V...
1. Prove that if {⃗v1, ⃗v2, ⃗v3} is a linear dependent set of vectors in V , and if ⃗v4 ∈ V , then {⃗v1, ⃗v2, ⃗v3, ⃗v4} is also a linear dependent set of vectors in V . 2. Prove that if {⃗v1,⃗v2,...,⃗vr} is a linear dependent set of vectors in V, and if⃗ vr + 1 ,⃗vr+2,...,⃗vn ∈V, then {⃗v1,⃗v2,...,⃗vn} is also a linear dependent set of vectors in V.
Find the orthogonal projection of u onto the subspace of R4 spanned by the vectors v1,...
Find the orthogonal projection of u onto the subspace of R4 spanned by the vectors v1, v2 and v3. u = (3, 4, 2, 4) ; v1 = (3, 2, 3, 0), v2 = (-8, 3, 6, 3), v3 = (6, 3, -8, 3) Let (x, y, z, w) denote the orthogonal projection of u onto the given subspace. Then, the components of the target orthogonal projection are
Suppose the vectors v1, v2, . . . , vp span a vector space V ....
Suppose the vectors v1, v2, . . . , vp span a vector space V . (1) Show that for each i = 1, . . . , p, vi belongs to V ; (2) Show that given any vector u ∈ V , v1, v2, . . . , vp, u also span V
Find a subset of the given vectors that form a basis for the space spanned by...
Find a subset of the given vectors that form a basis for the space spanned by the vectors. Verify that the vectors you chose form a basis by showing linear independence and span: v1 (1,3,-2), v2 (2,1,4), v3(3,-6,18), v4(0,1,-1), v5(-2,1-,-6)
Verify that the following vectors form an orthogonal list: v1=1, 1, 2 v2= 2,0,-1]     v3=1,...
Verify that the following vectors form an orthogonal list: v1=1, 1, 2 v2= 2,0,-1]     v3=1, −5, 2