Question

Problem B.4 The function ?1 = sin(3?) is a solution to ? ′′ + 9? =...

Problem B.4 The function ?1 = sin(3?) is a solution to ? ′′ + 9? = 0. This second-order ODE can be reduced to the first-order ODE ?′ sin(3?) + 6?cos(3?) = 0. Find a second linearly independent solution ?2. Also, obtain the general solution. Do not use the textbook’s formula 5. (Note: If you perform u-substitution to evaluate an integral, notice that the symbol ? normally used in the u-substitution is not the same as the ? in the equation ?2 = ??1. You may, therefore, wish to use some symbol such as ? in the “u-substitution” to evaluate the integral.)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a)Prove that the function u(x, y) = x -y÷x+y is harmonic and obtain a conjugate function...
a)Prove that the function u(x, y) = x -y÷x+y is harmonic and obtain a conjugate function v(x, y) such that f(z) = u + iv is analytic. b)Convert the integral from 0 to 5 of (25-t²)^3/2 dt into a Beta Function and evaluate the resulting function. c)Solve the first order PDE sin(x) sin(y) ∂u ∂x + cos(x) cos(y) ∂u ∂y = 0 such that u(x, y) = cos(2x), on x + y = π 2
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order...
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2, y2 = y1(x) e−∫P(x) dx y 2 1 (x) dx (5) as instructed, to find a second solution y2(x). y'' + 100y = 0; y1 = cos 10x I've gotten to the point all the way to where y2 = u y1, but my integral is wrong for some reason This was my answer y2= c1((sin(20x)+20x)cos10x)/40 + c2(cos(10x))
Q.3 (Applications of Linear Second Order ODE): Consider the ‘equation of motion’ given by ODE d2x...
Q.3 (Applications of Linear Second Order ODE): Consider the ‘equation of motion’ given by ODE d2x + ω2x = F0 cos(γt) dt2 where F0 and ω ̸= γ are constants. Without worrying about those constants, answer the questions (a)–(b). (a) Show that the general solution of the given ODE is [2 pts] x(t) := xc + xp = c1 cos(ωt) + c2 sin(ωt) + (F0 / ω2 − γ2) cos(γt). (b) Find the values of c1 and c2 if the...
Math 163 April 28th. 1) Consider the function ?(?) = ? 2? 3?. Write the first...
Math 163 April 28th. 1) Consider the function ?(?) = ? 2? 3?. Write the first three non-zero terms of the following series, and find a series formula: a. the Maclaurin series of ?(?). b. the Taylor series of ?(?) centered at ? = −2. 2) Consider the function ?(?) = ? arctan(3?). Write the first three non-zero terms of the following series, and find a series formula: a. the Maclaurin series of ?(?). b. the Taylor series of ?(?)...
A) In this problem we consider an equation in differential form ???+???=0Mdx+Ndy=0. The equation (5?^4?+4cos(2?)?^−4)??+(5?^5−3?^−4)??=0 in...
A) In this problem we consider an equation in differential form ???+???=0Mdx+Ndy=0. The equation (5?^4?+4cos(2?)?^−4)??+(5?^5−3?^−4)??=0 in differential form ?˜??+?˜??=0 is not exact. Indeed, we have My-Mx= ________ 5x^4-4(4)cos(2x)*y^(-5)-25x^4 (My-Mn)/M=_____ -4/y in function y alone. ?(?)= _____y^4 Multiplying the original equation by the integrating factor we obtain a new equation ???+???=0 where M=____ N=_____ which is exact since My=_____ Nx=______ This problem is exact. Therefore an implicit general solution can be written in the form  ?(?,?)=? where ?(?,?)=_________ Finally find the value...
Consider the differential equation 4x2y′′ − 8x2y′ + (4x2 + 1)y = 0 (a) Verify that...
Consider the differential equation 4x2y′′ − 8x2y′ + (4x2 + 1)y = 0 (a) Verify that x0 = 0 is a regular singular point of the differential equation and then find one solution as a Frobenius series centered at x0 = 0. The indicial equation has a single root with multiplicity two. Therefore the differential equation has only one Frobenius series solution. Write your solution in terms of familiar elementary functions. (b) Use Reduction of Order to find a second...
In this problem we consider an equation in differential form ???+???=0 The equation (6?^(1/?)+4?^3?^−3)??+(6?^2?^−2+4)??=0 in differential...
In this problem we consider an equation in differential form ???+???=0 The equation (6?^(1/?)+4?^3?^−3)??+(6?^2?^−2+4)??=0 in differential form ?˜??+?˜??=0 is not exact. Indeed, we have ?˜?−?˜?/M=______ is a function of ? alone. Namely we have μ(y)= Multiplying the original equation by the integrating factor we obtain a new equation ???+???=0 ?=____ ?=_____ Which is exact since ??=______ ??=_______ are equal. This problem is exact. Therefore an implicit general solution can be written in the form  ?(?,?)=?F where ?(?,?)=__________
There are 3 problems in the first part of this homework assignment. Consider the following second...
There are 3 problems in the first part of this homework assignment. Consider the following second order nonhomogeneous linear differential equations (1) y ′′ + 100y = 36 cos(8x) + 72 sin(8x) (2) y ′′ − 4y ′ + 3y = (2 − 12x)e x + (60 + 40x)e 3x (3) y ′′ − 2αy ′ + α 2 y = 60xeαx + 60x 2 e αx , where α 6= 0 is a real nonozero constant. Use the method...
Important Instructions: (1) λ is typed as lambda. (2) Use hyperbolic trig functions cosh(x) and sinh(x)...
Important Instructions: (1) λ is typed as lambda. (2) Use hyperbolic trig functions cosh(x) and sinh(x) instead of ex and e−x. (3) Write the functions alphabetically, so that if the solutions involve cos and sin, your answer would be Acos(x)+Bsin(x). (4) For polynomials use arbitrary constants in alphabetical order starting with highest power of x, for example, Ax2+Bx. (5) Write differential equations with leading term positive, so X′′−2X=0 rather than −X′′+2X=0. (6) Finally you need to simplify arbitrary constants. For...
Solve the initial-value problem. y"-6y'+9y=0; y(0)=2, y'(0)=3 Given that y1=x2 is a solution to y"+(1/x) y'-(4/x2)...
Solve the initial-value problem. y"-6y'+9y=0; y(0)=2, y'(0)=3 Given that y1=x2 is a solution to y"+(1/x) y'-(4/x2) y=0, find a second, linearly independent solution y2. Find the Laplace transform. L{t2 * tet} Thanks for solving!