Question

Define the centralizer of an element g of G to be the set C(g) = {x...

Define the centralizer of an element g of G to be the set C(g) = {x ∈ G : xg = gx}. Show that C(g) is a subgroup of G. If g generates a normal subgroup of G, prove that C(g) is normal in G.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let G be a group. Define Z(G) ={x∈G|xg=gx for all g∈G}, that is Z(G) is the...
Let G be a group. Define Z(G) ={x∈G|xg=gx for all g∈G}, that is Z(G) is the set of elements commuting with all the elements of G. We call Z(G) the center of G. (In German, the word for center is Zentrum, hence the use of the “Z”.) (a) Show that Z(G) is a subgroup of G. (b) Show that Z(G) is an abelian group.
Suppose that G is a group and H={x|xg=gx for all g∈G}. a.) Prove that H is...
Suppose that G is a group and H={x|xg=gx for all g∈G}. a.) Prove that H is a subgroup of G. b.) Prove that H is abelian.
Let G be a group and let X = G. Define an action of G on...
Let G be a group and let X = G. Define an action of G on X by g · x = gx for any g ∈ G and x ∈ X. Complete and prove the following statements. (a) For any x ∈ G, the orbit Ox is . . . (b) For any x ∈ G, the stabilizer Gx is . . .
Let H be a subgroup of G, and N be the normalizer of H in G...
Let H be a subgroup of G, and N be the normalizer of H in G and C be the centralizer of H in G. Prove that C is normal in N and the group N/C is isomorphic to a subgroup of Aut(H).
Prove that (Orbit-Stabilizer Theorem). Let G act on a finite set X and fix an x...
Prove that (Orbit-Stabilizer Theorem). Let G act on a finite set X and fix an x ∈ X. Then |Orb(x)| = [G : Gx] (the index of Gx).
Let G be a group and define the center (of G) Z(G) = {a ∈ G...
Let G be a group and define the center (of G) Z(G) = {a ∈ G | xa = ax, ∀ x ∈ G} a. Prove that Z(G) forms a subgroup of G. b. If G is abelian, show that Z(G) = G. c. What is the center of S3
Suppose H is a subgroup of G such that ϕ(H)=H for all ϕ is an element...
Suppose H is a subgroup of G such that ϕ(H)=H for all ϕ is an element in Aut(G). Prove H is a normal subgroup of G.
Let G be a group and let a ∈ G. The set CG(a) = {x ∈...
Let G be a group and let a ∈ G. The set CG(a) = {x ∈ G | xa = ax} of all elements that commute with a is called the Centralizer of a in G. (b) Compute CG(a) when G = S3and a = (1, 2). (c) Compute CG(a) when G = S4 and a = (1, 2). (d) Prove that Z(G) = ∩a∈GCG(a).
Let G and H be groups and f:G--->H be a surjective homomorphism. Let J be a...
Let G and H be groups and f:G--->H be a surjective homomorphism. Let J be a subgroup of H and define f^-1(J) ={x is an element of G| f(x) is an element of J} a. Show ker(f)⊂f^-1(J) and ker(f) is a normal subgroup of f^-1(J) b. Let p: f^-1(J) --> J be defined by p(x) = f(x). Show p is a surjective homomorphism c. Show the set kef(f) and ker(p) are equal d. Show J is isomorphic to f^-1(J)/ker(f)
Let G be a group and suppose H = {g5 : g ∈ G} is a...
Let G be a group and suppose H = {g5 : g ∈ G} is a subgroup of G. (a) Prove that H is normal subgroup of G. (b) Prove that every element in G/H has order at most 5.