Question

Can an ideal of some polynomial ring be a reducible polynomial? For example, could an ideal...

Can an ideal of some polynomial ring be a reducible polynomial?

For example, could an ideal of the polynomial ring Z2[x] be a reducible polynomial such as <x^2+x>? Obviously this ideal is not a prime ideal but is it still a (regular?) ideal?

Homework Answers

Answer #1

​​​​​​

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let R be a commutative ring with unity. Prove that the principal ideal generated by x...
Let R be a commutative ring with unity. Prove that the principal ideal generated by x in the polynomial ring R[x] is a prime ideal iff R is an integral domain.
Is x³ + 2x² + 3x + 1 reducible over Q? If not, why not? What...
Is x³ + 2x² + 3x + 1 reducible over Q? If not, why not? What is an irreducible / primitive polynomial? What does irreducible mean, what is a prime element? Can you give an example for a primitive that is not irreducible or vice versa? What can you say about the ring R [x]? Which qualities of rings do you know, can they somehow be ordered (main ideal ring, ZPE, Euclidean)? What do the associated polynomial rings look like?...
problem 2 In the polynomial ring Z[x], let I = {a0 + a1x + ... +...
problem 2 In the polynomial ring Z[x], let I = {a0 + a1x + ... + anx^n: ai in Z[x],a0 = 5n}, that is, the set of all polynomials where the constant coefficient is a multiple of 5. You can assume that I is an ideal of Z[x]. a. What is the simplest form of an element in the quotient ring z[x] / I? b. Explicitly give the elements in Z[x] / I. c. Prove that I is not a...
A commutative ring with unity is called regular if for each a in R there exists...
A commutative ring with unity is called regular if for each a in R there exists an x in R such that a^2x=a. Prove that in a regular ring, every prime ideal is maximal.
Determine whether or not x^2+x+1 is irreducible or not over the following fields. If the polynomial...
Determine whether or not x^2+x+1 is irreducible or not over the following fields. If the polynomial is reducible, factor it. a. Z2 b. Z3 c. Z5 d. Z7
(6) (a) Give an example of a ring with 9 elements which is not a field....
(6) (a) Give an example of a ring with 9 elements which is not a field. Explain your answer. (b) Give an example of a field of 25 elements. Explain why. (c) Find a non-zero polynomial f(x) in Z3[x] such that f(a) = 0 for every a ? Z3. (d) Find the smallest ideal of Q that contains 3/4.
4. (30) Let C be the ring of complex numbers,and letf:C→C be the map defined by...
4. (30) Let C be the ring of complex numbers,and letf:C→C be the map defined by f(z) = z^3. (i) Prove that f is not a homomorphism of rings, by finding an explicit counterex- ample. (ii) Prove that f is not injective. (iii) Prove that the principal ideal I = 〈x^2 + x + 1〉 is not a prime ideal of C[x]. (iv) Determine whether or not the ring C[x]/I is a field.
Let B = { f: ℝ  → ℝ | f is continuous } be the ring of...
Let B = { f: ℝ  → ℝ | f is continuous } be the ring of all continuous functions from the real numbers to the real numbers. Let a be any real number and define the following function: Φa:B→R f(x)↦f(a) It is called the evaluation homomorphism. (a) Prove that the evaluation homomorphism is a ring homomorphism (b) Describe the image of the evaluation homomorphism. (c) Describe the kernel of the evaluation homomorphism. (d) What does the First Isomorphism Theorem for...
Let M = { f: ℝ  → ℝ | f is continuous } be the ring of...
Let M = { f: ℝ  → ℝ | f is continuous } be the ring of all continuous functions from the real numbers to the real numbers. Let a be any real number and define the following function: Φa:M→R f(x)↦f(a) This is called the evaluation homomorphism. 1. Describe the kernel of the evaluation homomorphism. 2. Is the kernel of the evaluation homomorphism a prime ideal or a maximal ideal or both or neither?
Prompt 2: Identify a company that has an ideal or nearly ideal organizational culture and describe...
Prompt 2: Identify a company that has an ideal or nearly ideal organizational culture and describe the culture.  This means finding a current company example (not one in the book for this chapter) and discuss. Be sure to identify (with definition), which one of the organizational cultures described in the text best matches this company. (As a side note: Just because a culture is bureaucratic does not mean it is "bad" or even less desirable for the organization for that particular...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT