Question

Let R be a ring. Define a group structure on {(a,b) ∈ R^2: a^2+b^2=1}

Let R be a ring. Define a group structure on {(a,b) ∈ R^2: a^2+b^2=1}

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let R be a ring, and assume that r^2 = r for all r ∈ R....
Let R be a ring, and assume that r^2 = r for all r ∈ R. (a) Prove that r + r = 0 for all r ∈ R. (b) Prove that R is commutative.
Let R be a ring. Show that the set Aut(R) = {φ : R → R|φ...
Let R be a ring. Show that the set Aut(R) = {φ : R → R|φ is a ring isomorphism} is a group with composition.
Answer b please... Let R be a ring and let Z(R) := {z ∈ R :...
Answer b please... Let R be a ring and let Z(R) := {z ∈ R : zr = rz for all r ∈ R}. (a) Show that Z(R) ≤ R. It is called the centre of R. (b) Let R be the quaternions H = {a+bi+cj+dk : a,b,c,d ∈ R} and let S = {a + bi ∈ H}. Show that S is a commutative subring of H, but there are elements in H that do not commute with elements...
Let R be a ring, and let N be an ideal of R. Let γ :...
Let R be a ring, and let N be an ideal of R. Let γ : R → R/N be the canonical homomorphism. (a) Let I be an ideal of R such that I ⊇ N. Prove that γ−1[γ[I]] = I. (b) Prove that mapping {ideals I of R such that I ⊇ N} −→ {ideals of R/N} is a well-defined bijection between two sets
Let A, B be non-empty subsets of R. Define A + B = {a + b...
Let A, B be non-empty subsets of R. Define A + B = {a + b | a ∈ A and b ∈ B}. (a) If A = (−1, 2] and B = [1, 4], what is A + B?
Define a+b=a+b -1 and a*b=ab-(a+b)+2 Assume that (Z, +,*) is a ring. (a) Prove that the...
Define a+b=a+b -1 and a*b=ab-(a+b)+2 Assume that (Z, +,*) is a ring. (a) Prove that the additative identity is 1? (b) what is the multipicative identity? (Make sure you proe that your claim is true). (c) Prove that the ring is commutative. (d) Prove that the ring is an integral domain. (Abstrat Algebra)
let g be a group. let h be a subgroup of g. define a~b. if ab^-1...
let g be a group. let h be a subgroup of g. define a~b. if ab^-1 is in h. prove ~ is an equivalence relation on g
Let R be a ring. For n ≥ 0, let In = {a ∈ R |...
Let R be a ring. For n ≥ 0, let In = {a ∈ R | 5na = 0}. Show that I = ⋃ In is an ideal of R. Please use the strategies from Chapter 14 in Joseph Gallian's "Contemporary Abstract Algebra."
Let R be a ring. For n ≥ 0, let In = {a ∈ R |...
Let R be a ring. For n ≥ 0, let In = {a ∈ R | 5na = 0}. Show that I = ⋃ In is an ideal of R. Please use the strategies from Chapter 14 in Joseph Gallian's "Contemporary Abstract Algebra."
Let R be a ring. For n > or equal to 0, let In = {a...
Let R be a ring. For n > or equal to 0, let In = {a element of R | 5na = 0}. Show that I = union of In is an ideal of R.