Question

Use Stokes' Theorem to evaluate    S curl F · dS. F(x, y, z) = x2...

Use Stokes' Theorem to evaluate

  
S

curl F · dS.

F(x, y, z) = x2 sin(z)i + y2j + xyk,


S is the part of the paraboloid

z = 1 − x2 − y2

that lies above the xy-plane, oriented upward.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Use Stokes' theorem to find the flux curl ∫∫s (CurlG). dS where G(x,y,z) = <-xy2, x2y,...
Use Stokes' theorem to find the flux curl ∫∫s (CurlG). dS where G(x,y,z) = <-xy2, x2y, 1> and S is the portion of the paraboloid z = x2 + y2 inside the cylinder x2 + y2 = 1. Use an upward-pointing normal.
Use Stokes" Theorem to evaluate (F-dr where F(x, y, z)=(-y , x-z , 0) and the...
Use Stokes" Theorem to evaluate (F-dr where F(x, y, z)=(-y , x-z , 0) and the surface S is the part of the paraboloid : z = 4- x^2 - y^2 that lies above the xy-plane. Assume C is oriented counterclockwise when viewed from above.
Evaluate the surface integral S F · dS for the given vector field F and the...
Evaluate the surface integral S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = xy i + yz j + zx k S is the part of the paraboloid z = 4 − x2 − y2 that lies above the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, and has...
Evaluate the surface integral S F · dS for the given vector field F and the...
Evaluate the surface integral S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = xy i + yz j + zx k S is the part of the paraboloid z = 6 − x2 − y2 that lies above the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, and has...
Evaluate the surface integral    S F · dS for the given vector field F and...
Evaluate the surface integral    S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = xy i + yz j + zx k S is the part of the paraboloid z = 6 − x2 − y2 that lies above the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, and...
Evaluate the surface integral    S F · dS for the given vector field F and...
Evaluate the surface integral    S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = xy i + yz j + zx k S is the part of the paraboloid z = 2 − x2 − y2 that lies above the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, and...
Let F(x, y, z) = z tan−1(y2)i + z3 ln(x2 + 8)j + zk. Find the...
Let F(x, y, z) = z tan−1(y2)i + z3 ln(x2 + 8)j + zk. Find the flux of F across S, the part of the paraboloid x2 + y2 + z = 6 that lies above the plane z = 5 and is oriented upward.    S F · dS =  
Let F(x, y, z) = z tan−1(y2)i + z3 ln(x2 + 9)j + zk. Find the...
Let F(x, y, z) = z tan−1(y2)i + z3 ln(x2 + 9)j + zk. Find the flux of F across S, the part of the paraboloid x2 + y2 + z = 7 that lies above the plane z = 3 and is oriented upward.
Let F(x, y, z) = z tan−1(y2)i + z3 ln(x2 + 7)j + zk. Find the...
Let F(x, y, z) = z tan−1(y2)i + z3 ln(x2 + 7)j + zk. Find the flux of F across S, the part of the paraboloid x2 + y2 + z = 6 that lies above the plane z = 5 and is oriented upward.
Use the Divergence Theorem to calculate the surface integral S F · dS; that is, calculate...
Use the Divergence Theorem to calculate the surface integral S F · dS; that is, calculate the flux of F across S. F(x, y, z) = ey tan(z)i + y 3 − x2 j + x sin(y)k, S is the surface of the solid that lies above the xy-plane and below the surface z = 2 − x4 − y4, −1 ≤ x ≤ 1, −1 ≤ y ≤ 1.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT