Question

Using induction prove that for all positive integers n, n^2−n is even.

Using induction prove that for all positive integers n, n^2−n is even.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Without using the Fundamental Theorem of Arithmetic, use strong induction to prove that for all positive...
Without using the Fundamental Theorem of Arithmetic, use strong induction to prove that for all positive integers n with n ≥ 2, n has a prime factor.
Prove by induction that 5^n + 12n – 1 is divisible by 16 for all positive...
Prove by induction that 5^n + 12n – 1 is divisible by 16 for all positive integers n.
Use Mathematical Induction to prove that 3 | (n^3 + 2n) for all integers n =...
Use Mathematical Induction to prove that 3 | (n^3 + 2n) for all integers n = 0, 1, 2, ....
Prove by induction that 5n + 12n – 1 is divisible by 16 for all positive...
Prove by induction that 5n + 12n – 1 is divisible by 16 for all positive integers n.
1) Prove by induction that 1-1/2 + 1/3 -1/4 + ... - (-1)^n /n is always...
1) Prove by induction that 1-1/2 + 1/3 -1/4 + ... - (-1)^n /n is always positive 2) Prove by induction that for all positive integers n, (n^2+n+1) is odd.
Prove the following using induction: (a) For all natural numbers n>2, 2n>2n+1 (b) For all positive...
Prove the following using induction: (a) For all natural numbers n>2, 2n>2n+1 (b) For all positive integersn, 1^3+3^3+5^3+···+(2^n−1)^3=n^2(2n^2−1) (c) For all positive natural numbers n,5/4·8^n+3^(3n−1) is divisible by 19
Prove that for all positive integers n, (1^3) + (2^3) + ... + (n^3) = (1+2+...+n)^2
Prove that for all positive integers n, (1^3) + (2^3) + ... + (n^3) = (1+2+...+n)^2
Show that for all positive integers n ∑(from i=0 to n) 2^i=2^(n+1)−1 please use induction only
Show that for all positive integers n ∑(from i=0 to n) 2^i=2^(n+1)−1 please use induction only
Prove, using mathematical induction, that (1 + 1/ 2)^ n ≥ 1 + n /2 ,whenever...
Prove, using mathematical induction, that (1 + 1/ 2)^ n ≥ 1 + n /2 ,whenever n is a positive integer.
Prove that |U(n)| is even for all integers n ≥ 3. (use Lagrange’s Theorem)
Prove that |U(n)| is even for all integers n ≥ 3. (use Lagrange’s Theorem)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT