Question

Given dy/dx =y(y−3)(1−y)^2 dx (a) Sketch the phase line (portrait) and classify all of the critical...

Given dy/dx =y(y−3)(1−y)^2 dx (a) Sketch the phase line (portrait) and classify all of the critical (equilibrium) points. Use arrows to indicated the flow on the phase line (away or towards a critical point). (b) Next to your phase line, sketch the graph of solutions satisfying the initial conditions: y(0)=0, y(0)=1, y(0)=2, y(0)=3, y(2)=4, y(0)=5.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the autonomous first-order differential equation dy/dx=4y-(y^3). 1. Classify each critical point as asymptotically stable, unstable,...
Consider the autonomous first-order differential equation dy/dx=4y-(y^3). 1. Classify each critical point as asymptotically stable, unstable, or semi-stable. (DO NOT draw the phase portrait and DO NOT sketch the solution curves) 2. Solve the Bernoulli differential equation dy/dx=4y-(y^3).
1. Sketch the direction field for the following differential equation dy dx = y − x....
1. Sketch the direction field for the following differential equation dy dx = y − x. You may use maple and attach your graph. Also sketch the solution curves with initial conditions y(0) = −1 and y(0) = 1.
For the autonomous differential equation dy/dt=1-y^2, sketch a graph of f(y) versus y, identify the equilibrium...
For the autonomous differential equation dy/dt=1-y^2, sketch a graph of f(y) versus y, identify the equilibrium solutions identify them as stable, semistable or unstable, draw the phase line and sketch several graphs of solutions in the ty-plane.
Sketch the phase portrait of y” - y’ - 6y = 0, y(0) = 2, y’(0)...
Sketch the phase portrait of y” - y’ - 6y = 0, y(0) = 2, y’(0) = 3 as an autonomous system of two first order equations and discuss the stability and the long time behavior of the solutions.
Consider the equation: x'=x^3-3x^2+2x sketch the phase line. solve the equation and sketch the graphs of...
Consider the equation: x'=x^3-3x^2+2x sketch the phase line. solve the equation and sketch the graphs of some solutions including at least one solution with values in each interval above, below and between the critical points. identify critical points as stable or unstable
Consider the initial value problem dy dx = 1−2x 2y , y(0) = − √2 (a)...
Consider the initial value problem dy dx = 1−2x 2y , y(0) = − √2 (a) (6 points) Find the explicit solution to the initial value problem. (b) (3 points) Determine the interval in which the solution is defined.
Find a solution of x dy dx = y2 − y that passes through the indicated...
Find a solution of x dy dx = y2 − y that passes through the indicated points. (a) (0, 1) y = (b) (0, 0) y = (c) 1/ 3 , 1 /3 y = (d) 2, 1/ 8 y =
Solve: 1.dy/dx=(e^(y-x)).secy.(1+x^2),y(0)=0.    2.dy/dx=(1-x-y)/(x+y),y(0)=2 .
Solve: 1.dy/dx=(e^(y-x)).secy.(1+x^2),y(0)=0.    2.dy/dx=(1-x-y)/(x+y),y(0)=2 .
Use Implicit Differentiation to find first dy/dx , then the equation of the tangent line to...
Use Implicit Differentiation to find first dy/dx , then the equation of the tangent line to the curve x2+xy+y2= 2-y at the point (0,-2) b. Determine a function of the form f(x)= ax2+ bx + c (that is, find the real numbers a,b,c ) if the graph of the function has slope 2 at the point (3,4) , and has a horizontal tangent where x=1 c. Assume that x,y are functions of variable t satisfying the equation x2+xy=10. Find dy/dt...
1.Given that y = x + tan−1 y , find dy dx 2.Determine the equation of...
1.Given that y = x + tan−1 y , find dy dx 2.Determine the equation of the tangent line to the curve y = (2 + x) e −x at the point (0, 2)