Question

Let f : R − {−1} →R be defined by f(x)=2x/(x+1). (a)Prove that f is injective....

Let f : R − {−1} →R be defined by f(x)=2x/(x+1).

(a)Prove that f is injective.

(b)Show that f is not surjective.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let f : R → R + be defined by the formula f(x) = 10^2−x ....
Let f : R → R + be defined by the formula f(x) = 10^2−x . Show that f is injective and surjective, and find the formula for f −1 (x). Suppose f : A → B and g : B → A. Prove that if f is injective and f ◦ g = iB, then g = f −1 .
Prove that f : R → R where f(x) = |x| is neither injective nor surjective.
Prove that f : R → R where f(x) = |x| is neither injective nor surjective.
Is the function f : R → R defined by f(x) = x 3 − x...
Is the function f : R → R defined by f(x) = x 3 − x injective, surjective, bijective or none of these? Thank you!
8.4: Let f : X → Y and g : Y→ Z be maps. Prove that...
8.4: Let f : X → Y and g : Y→ Z be maps. Prove that if composition g o f is surjective then g is surjective. 8.5: Let f : X → Y and g : Y→ Z be bijections. Prove that if composition g o f is bijective then f is bijective. 8.6: Let f : X → Y and g : Y→ Z be maps. Prove that if composition g o f is bijective then f is...
Let X, Y and Z be sets. Let f : X → Y and g :...
Let X, Y and Z be sets. Let f : X → Y and g : Y → Z functions. (a) (3 Pts.) Show that if g ◦ f is an injective function, then f is an injective function. (b) (2 Pts.) Find examples of sets X, Y and Z and functions f : X → Y and g : Y → Z such that g ◦ f is injective but g is not injective. (c) (3 Pts.) Show that...
Let f:A→B and g:B→C be maps. Prove that if g◦f is a bijection, then f is...
Let f:A→B and g:B→C be maps. Prove that if g◦f is a bijection, then f is injective and g is surjective.*You may not use, without proof, the result that if g◦f is surjective then g is surjective, and if g◦f is injective then f is injective. In fact, doing so would result in circular logic.
Prove that: If f : R → R is strictly increasing, then f is injective.
Prove that: If f : R → R is strictly increasing, then f is injective.
Prove that the function f : R \ {−1} → R defined by f(x) = (1−x)...
Prove that the function f : R \ {−1} → R defined by f(x) = (1−x) /(1+x) is uniformly continuous on (0, ∞) but not uniformly continuous on (−1, 1).
Let f : R → R be defined by f(x) = x^3 + 3x, for all...
Let f : R → R be defined by f(x) = x^3 + 3x, for all x. (i) Prove that if y > 0, then there is a solution x to the equation f(x) = y, for some x > 0. Conclude that f(R) = R. (ii) Prove that the function f : R → R is strictly monotone. (iii) By (i)–(ii), denote the inverse function (f ^−1)' : R → R. Explain why the derivative of the inverse function,...
Let f : A → B and g : B → C. For each statement below...
Let f : A → B and g : B → C. For each statement below either prove it or construct f, g, A, B, C which show that the statement is false. (a) If g ◦ f is surjective, then g is surjective. (b) If g ◦ f is surjective, then f is surjective. (c) If g ◦ f is injective, then f and g are injective