Question

for all positive integers n, 9^n=8n+1(mod16)

for all positive integers n, 9^n=8n+1(mod16)




Homework Answers

Answer #1

Feel free to ask any doubt in comment section. ?

Please like if you satisfied. Thank you. ?

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Problem 1. Prove that for all positive integers n, we have 1 + 3 + ....
Problem 1. Prove that for all positive integers n, we have 1 + 3 + . . . + (2n − 1) = n ^2 .
Prove that for all positive integers n, (1^3) + (2^3) + ... + (n^3) = (1+2+...+n)^2
Prove that for all positive integers n, (1^3) + (2^3) + ... + (n^3) = (1+2+...+n)^2
Find all integers n (positive, negative, or zero) so that (n^2)+1 is divisible by n+1. ANS:...
Find all integers n (positive, negative, or zero) so that (n^2)+1 is divisible by n+1. ANS: n = -3, -2, 0, 1
Show that n = ∑ d ∣ n ϕ ( d ) for all positive integers...
Show that n = ∑ d ∣ n ϕ ( d ) for all positive integers n.
Using induction prove that for all positive integers n, n^2−n is even.
Using induction prove that for all positive integers n, n^2−n is even.
Show that for all positive integers n ∑(from i=0 to n) 2^i=2^(n+1)−1 please use induction only
Show that for all positive integers n ∑(from i=0 to n) 2^i=2^(n+1)−1 please use induction only
Test the series for convergence or divergence. ∞ (−1)n 8n − 5 9n + 5 n...
Test the series for convergence or divergence. ∞ (−1)n 8n − 5 9n + 5 n = 1 Step 1 To decide whether ∞ (−1)n 8n − 5 9n + 5 n = 1 converges, we must find lim n → ∞ 8n − 5 9n + 5 . The highest power of n in the fraction is 1    1 . Step 2 Dividing numerator and denominator by n gives us lim n → ∞ 8n − 5 9n +...
Characterize the set of all positive integers n for which φ(n) is divisible by 2 but...
Characterize the set of all positive integers n for which φ(n) is divisible by 2 but not by 4
Let m and n be positive integers. Exhibit an arrangement of the integers between 1 and...
Let m and n be positive integers. Exhibit an arrangement of the integers between 1 and mn which has no increasing subsequence of length m + 1, and no decreasing subsequence of length n + 1.
1. A) Show that the set of all m by n matrices of integers is countable...
1. A) Show that the set of all m by n matrices of integers is countable where m,n ≥ 1 are some fixed positive integers.