Question

Prove that the family of trigonometric functions { 1, cos x, sin x, ..., cos nx,...

Prove that the family of trigonometric functions { 1, cos x, sin x, ..., cos nx, sin nx, ...} form an orthogonal system on [-pi,pi] prove that the following orthogonality relations

hold integral from -pi to pi of sin nx dx = 0 and integral from -pi to pi of cos nx dx = 0

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
using reduction formula*** 13. Evaluate, ∫ sin 5x cos x dx. Also prove that, ∫ sin...
using reduction formula*** 13. Evaluate, ∫ sin 5x cos x dx. Also prove that, ∫ sin mx cos nx dx = 0
We often reason with trigonometric identities such as sin^2(x) + cos^2(x) = 1. Given a set...
We often reason with trigonometric identities such as sin^2(x) + cos^2(x) = 1. Given a set of such identities S and an identity to prove using the set S, what would be the most efficient data structure and algorithm for this purpose. Justify your answer. Explain the representation of the identities with an example.
Problem 7. Consider the line integral Z C y sin x dx − cos x dy....
Problem 7. Consider the line integral Z C y sin x dx − cos x dy. a. Evaluate the line integral, assuming C is the line segment from (0, 1) to (π, −1). b. Show that the vector field F = <y sin x, − cos x> is conservative, and find a potential function V (x, y). c. Evaluate the line integral where C is any path from (π, −1) to (0, 1).
Prove the continuity of sin x or cos x on R, or simply on any interval...
Prove the continuity of sin x or cos x on R, or simply on any interval of length 2\pi.
i)Please state if the following equations are exact or not: (a) (sin(xy) − xy cos(xy))dx +...
i)Please state if the following equations are exact or not: (a) (sin(xy) − xy cos(xy))dx + x^2 cos(xy)dy = 0 (b) (x^3 + xy^2 )dx + (x^2 y + y^3 )dy = 0 ii) Determine if the following equation is exact, and if it is exact, find its complete integral in the form g(x, y) = C: (3(x)^2 + 2(y)^2 )dx + (4xy + 6(y)^2 )dy = 0
Prove that the integral from 0 to Infinity (sin^2(x)e^-x)dx converges using the comparison test.
Prove that the integral from 0 to Infinity (sin^2(x)e^-x)dx converges using the comparison test.
Solve the following Differential equations a) x sin y dx + (x^2 + 1) cos y...
Solve the following Differential equations a) x sin y dx + (x^2 + 1) cos y dy = 0
Solve for −?≤?≤?. (a) cos x – sin x = 1 (b) sin 4x – sin...
Solve for −?≤?≤?. (a) cos x – sin x = 1 (b) sin 4x – sin 2x=0 (c) cos x−√3sin ? = 1
Prove the following (4 sin(θ) cos(θ))(1 − 2 sin2 (θ)) = sin(4θ) cos(2θ) /1 + sin(2θ)...
Prove the following (4 sin(θ) cos(θ))(1 − 2 sin2 (θ)) = sin(4θ) cos(2θ) /1 + sin(2θ) = cot(θ) − 1/ cot(θ) + 1 cos(u) /1 + sin(u) + 1 + sin(u) /cos(u) = 2 sec(u)
if f''(x)= -cos(x)+sin(x), and f(0)=1 and f(pi)=), what is the original function
if f''(x)= -cos(x)+sin(x), and f(0)=1 and f(pi)=), what is the original function