Question

Given the differential equation y''−2y'+y=0,  y(0)=1,  y'(0)=2 Apply the Laplace Transform and solve for Y(s)=L{y} Y(s) =     Now...

Given the differential equation

y''−2y'+y=0,  y(0)=1,  y'(0)=2

Apply the Laplace Transform and solve for Y(s)=L{y}

Y(s) =    

Now solve the IVP by using the inverse Laplace Transform y(t)=L^−1{Y(s)}

y(t) =

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Use the Laplace transform to solve the following initial value problem y”+4y=cos(8t) y(0)=0, y’(0)=0 First, use...
Use the Laplace transform to solve the following initial value problem y”+4y=cos(8t) y(0)=0, y’(0)=0 First, use Y for the Laplace transform of y(t) find the equation you get by taking the Laplace transform of the differential equation and solving for Y: Y(s)=? Find the partial fraction decomposition of Y(t) and its inverse Laplace transform to find the solution of the IVP: y(t)=?
Use Laplace transform to solve IVP 2y”+2y’+y=2t , y(0)=1 , y’(0)=-1
Use Laplace transform to solve IVP 2y”+2y’+y=2t , y(0)=1 , y’(0)=-1
Use the Laplace transform to solve the following IVP y′′ +2y′ +2y=δ(t−5) ,y(0)=1,y′(0)=2, where δ(t) is...
Use the Laplace transform to solve the following IVP y′′ +2y′ +2y=δ(t−5) ,y(0)=1,y′(0)=2, where δ(t) is the Dirac delta function.
Use laplace transform to solve the given IVP y''-2y'-48y=0 y(0)=13 y'(0)=6
Use laplace transform to solve the given IVP y''-2y'-48y=0 y(0)=13 y'(0)=6
Differential Equations: Use the Laplace transform to solve the given initial value problem: y′′ −2y′ +2y=cost;...
Differential Equations: Use the Laplace transform to solve the given initial value problem: y′′ −2y′ +2y=cost; y(0)=1, y′(0)=0
Take the Laplace transform of the following initial value problem and solve for Y(s)=L{y(t)}: y′′−2y′−35y=S(t)y(0)=0,y′(0)=0 where...
Take the Laplace transform of the following initial value problem and solve for Y(s)=L{y(t)}: y′′−2y′−35y=S(t)y(0)=0,y′(0)=0 where S is a periodic function defined by S(t)={1,0≤t<1 0, 1≤t<2, and S(t+2)=S(t) for all t≥0. Hint: : Use the formula for the Laplace transform of a periodic function. Y(s)=
Use the Laplace transform to solve the following initial value problem: y′′ + 8y ′+ 16y...
Use the Laplace transform to solve the following initial value problem: y′′ + 8y ′+ 16y = 0 y(0) = −3 , y′(0) = −3 First, using Y for the Laplace transform of y(t)y, i.e., Y=L{y(t)}, find the equation you get by taking the Laplace transform of the differential equation __________________________ = 0 Now solve for Y(s) = ______________________________ and write the above answer in its partial fraction decomposition, Y(s) = A / (s+a) + B / ((s+a)^2) Y(s) =...
solve using the laplace transform y''-2y'+y=e^-t , y(0)=0 , y'(0)=1
solve using the laplace transform y''-2y'+y=e^-t , y(0)=0 , y'(0)=1
y^''-y^'-2y= e^t , y(0)=0 and y^'(0)=1 Solve by using laplace transform
y^''-y^'-2y= e^t , y(0)=0 and y^'(0)=1 Solve by using laplace transform
Consider the initial value problem y′′+4y=16t,y(0)=8,y′(0)=6.y″+4y=16t,y(0)=8,y′(0)=6. Take the Laplace transform of both sides of the given...
Consider the initial value problem y′′+4y=16t,y(0)=8,y′(0)=6.y″+4y=16t,y(0)=8,y′(0)=6. Take the Laplace transform of both sides of the given differential equation to create the corresponding algebraic equation. Denote the Laplace transform of y(t) by Y(s). Do not move any terms from one side of the equation to the other (until you get to part (b) below). Solve your equation for Y(s) Y(s)=L{y(t)}=__________ Take the inverse Laplace transform of both sides of the previous equation to solve for y(t)y(t). y(t)=__________