Question

Let T ∈ L(U,V) and S ∈ L(V,W). Prove that the product ST is a linear...

Let T ∈ L(U,V) and S ∈ L(V,W). Prove that the product ST is a linear map and hence ST ∈ L(U,W). Please be specific about each step, thank you!

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let T:V→W be a linear transformation and U be a subspace of V. Let T(U)T(U) denote...
Let T:V→W be a linear transformation and U be a subspace of V. Let T(U)T(U) denote the image of U under T (i.e., T(U)={T(u⃗ ):u⃗ ∈U}). Prove that T(U) is a subspace of W
Let T: U--> V be a linear transformation. Prove that the range of T is a...
Let T: U--> V be a linear transformation. Prove that the range of T is a subspace of W
let v be an inner product space with an inner product(u,v) prove that ||u+v||<=||u||+||v||, ||w||^2=(w,w) ,...
let v be an inner product space with an inner product(u,v) prove that ||u+v||<=||u||+||v||, ||w||^2=(w,w) , for all u,v load to V. hint : you may use the Cauchy-Schwars inquality: |{u,v}|,= ||u||*||v||.
Let the linear transformation T: V--->W be such that T (u) = u2 If a, b...
Let the linear transformation T: V--->W be such that T (u) = u2 If a, b are Real. Find T (au + bv) , if u = (x, y) v = (z, w) and uv = (xz-yw, xw + yz) Let the linear transformation T: V---> W be such that T (u) = T (x, y) = (xy, 0) where u = (x, y), with 2, -3. Then, if u = ( 1.0) and v = (0.1). Find the value...
Let (V, |· |v ) and (W, |· |w ) be normed vector spaces. Let T...
Let (V, |· |v ) and (W, |· |w ) be normed vector spaces. Let T : V → W be linear map. The kernel of T, denoted ker(T), is defined to be the set ker(T) = {v ∈ V : T(v) = 0}. Then ker(T) is a linear subspace of V . Let W be a closed subspace of V with W not equal to V . Prove that W is nowhere dense in V .
Let S={u,v,w}S={u,v,w} be a linearly independent set in a vector space V. Prove that the set...
Let S={u,v,w}S={u,v,w} be a linearly independent set in a vector space V. Prove that the set S′={3u−w,v+w,−2w}S′={3u−w,v+w,−2w} is also a linearly independent set in V.
Let W be an inner product space and v1,...,vn a basis of V. Show that〈S, T...
Let W be an inner product space and v1,...,vn a basis of V. Show that〈S, T 〉 = 〈Sv1, T v1〉 + . . . + 〈Svn, T vn〉 for S,T ∈ L(V,W) is an inner product on L(V,W). Let S ∈ L(R^2) be given by S(x1, x2) = (x1 + x2, x2) and let I ∈ L(R^2) be the identity operator. Using the inner product defined in problem 1 for the standard basis and the dot product, compute 〈S,...
(a) Prove that if two linear transformations T,U : V --> W have the same values...
(a) Prove that if two linear transformations T,U : V --> W have the same values on a basis for V, i.e., T(x) = U(x) for all x belong to beta , then T = U. Conclude that every linear transformation is uniquely determined by the images of basis vectors. (b) (7 points) Determine the linear transformation T : P1(R) --> P2(R) given by T (1 + x) = 1+x^2, T(1- x) = x by finding the image T(a+bx) of...
Let V be a finite-dimensional vector space and let T be a linear map in L(V,...
Let V be a finite-dimensional vector space and let T be a linear map in L(V, V ). Suppose that dim(range(T 2 )) = dim(range(T)). Prove that the range and null space of T have only the zero vector in common
Suppose that V is finite-dimensional, U ⊂ V is a subspace, and S : U →...
Suppose that V is finite-dimensional, U ⊂ V is a subspace, and S : U → W is a linear map. Show that there exists a linear map T : V → W such that T u = Su for every u ∈ U.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT