Question

In the interval −π < t < 0,       f(t) = 1; and for 0 < t...

In the interval −π < t < 0,       f(t) = 1; and for 0 < t < π, f(t) = 0.     f(t) = f(t+2 π)

Find the following for f(t) as associated with the Fourier series:

  1. a0 =?
  2. an =?  
  3. bn =?

ωo =?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Write the Fourier cosine series for f(x) on the interval 0 ≤ x ≤ π. Parameter...
Write the Fourier cosine series for f(x) on the interval 0 ≤ x ≤ π. Parameter c is a constant. f(x) = x + e −x + c (b) Determine the value of c such that a0 in the Fourier cosine series is equal to zero.
The sketch of the following periodic function f(t) given in one period, f(t) = {(3t+1), -1...
The sketch of the following periodic function f(t) given in one period, f(t) = {(3t+1), -1 < t <= 1 and 0, -3 < t <= -1 a) Find period of the function, 2p? b) Find Fourier coeff, a0, an (n =>1), bn? c) Fourier series representation of f(t)? d) Result from (c), find the first four non-zero term?
Find the Fourier analysis (a0, an, bn) 0 < x < T/2 f(t)= 2At/T T/2 <...
Find the Fourier analysis (a0, an, bn) 0 < x < T/2 f(t)= 2At/T T/2 < x < T f(t)= 2At/T - 2A
Find the Fourier series of the function f on the given interval. f(x) = 0,   ...
Find the Fourier series of the function f on the given interval. f(x) = 0,    −π < x < 0 1,    0 ≤ x < π
1. Find the Fourier cosine series for f(x) = x on the interval 0 ≤ x...
1. Find the Fourier cosine series for f(x) = x on the interval 0 ≤ x ≤ π in terms of cos(kx). Hint: Use the even extension. 2. Find the Fourier sine series for f(x) = x on the interval 0 ≤ x ≤ 1 in terms of sin(kπx). Hint: Use the odd extension.
Compute the complex Fourier series of the function f(x)= 0 if − π < x <...
Compute the complex Fourier series of the function f(x)= 0 if − π < x < 0, 1 if 0 ≤ x < π on the interval [−π, π]. To what value does the complex Fourier series converge at x = 0?
Calculate the Fourier series expansion of the function: f(x) =1/2(π-x) , when 0 < x ≤...
Calculate the Fourier series expansion of the function: f(x) =1/2(π-x) , when 0 < x ≤ π   and f(x) = - 1/2(π+x), when -π ≤ x < 0
For the periodic function y(t) with period 12, y(t) = (0 if −6 < t <...
For the periodic function y(t) with period 12, y(t) = (0 if −6 < t < −3, 4 if −3 < t < 3, 0 if 3 < t < 6) (a) determine the real Fourier series of y(t): y(t) = a0 + ∞ Sum n=1 (an cos(2πfnt) + bn sin (2πfnt)) The ns are subscripts
Solve the following initial/boundary value problem: ∂u(t,x)/∂t = ∂^2u(t,x)/∂x^2 for t>0, 0<x<π, u(t,0)=u(t,π)=0 for t>0, u(0,x)=sin^2x...
Solve the following initial/boundary value problem: ∂u(t,x)/∂t = ∂^2u(t,x)/∂x^2 for t>0, 0<x<π, u(t,0)=u(t,π)=0 for t>0, u(0,x)=sin^2x for 0≤x≤ π. if you like, you can use/cite the solution of Fourier sine series of sin^2(x) on [0,pi] = 1/4-(1/4)cos(2x) please show all steps and work clearly so I can follow your logic and learn to solve similar ones myself.
Deduce Fourier series of sin x, over the interval : 0 < x < π
Deduce Fourier series of sin x, over the interval : 0 < x < π