Question

5. The population for a suburb of a large city is modeled by the initial value...

5. The population for a suburb of a large city is modeled by the initial value problem:
dy/dt= y(10^−1 −10^(−7y)), y(0) = 5000
where t is measured in months.

(a) Solve the initial value problem. You may use the general solution provided in Worksheet 9.

(b) What is the limiting value of the population k? That is, what lis lim t→∞ y(t)?

(c) When will the population in the suburb be equal to k/2?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Solve the Initial Value Problem: a) dydx+2y=9, y(0)=0 y(x)=_______________ b) dydx+ycosx=5cosx,        y(0)=7d y(x)=______________ c) Find the...
Solve the Initial Value Problem: a) dydx+2y=9, y(0)=0 y(x)=_______________ b) dydx+ycosx=5cosx,        y(0)=7d y(x)=______________ c) Find the general solution, y(t), which solves the problem below, by the method of integrating factors. 8t dy/dt +y=t^3, t>0 Put the problem in standard form. Then find the integrating factor, μ(t)= ,__________ and finally find y(t)= __________ . (use C as the unkown constant.) d) Solve the following initial value problem: t dy/dt+6y=7t with y(1)=2 Put the problem in standard form. Then find the integrating...
Solve the initial value problem 8(t+1)dy/dt−6y=12t, for t>−1 with y(0)=11.
Solve the initial value problem 8(t+1)dy/dt−6y=12t, for t>−1 with y(0)=11.
Solve the initial value problem 8(t+1)dy/dt - 6y = 12t for t > -1 with y(0)...
Solve the initial value problem 8(t+1)dy/dt - 6y = 12t for t > -1 with y(0) = 7 7 =
1. Solve the following initial value problem using Laplace transforms. d^2y/dt^2+ y = g(t) with y(0)=0...
1. Solve the following initial value problem using Laplace transforms. d^2y/dt^2+ y = g(t) with y(0)=0 and dy/dt(0) = 1 where g(t) = t/2 for 0<t<6 and g(t) = 3 for t>6
Solve the initial value problem t^(13) (dy/dt) +2t^(12) y =t^25 with t>0 and y(1)=0 (y'-e^-t+4)/y=-4, y(0)=-1
Solve the initial value problem t^(13) (dy/dt) +2t^(12) y =t^25 with t>0 and y(1)=0 (y'-e^-t+4)/y=-4, y(0)=-1
Initial value problem dy/dt=(6t^5/1+t^6)y+7(1+t^6)^2 y(1)=8
Initial value problem dy/dt=(6t^5/1+t^6)y+7(1+t^6)^2 y(1)=8
solve the given initial value problem. y(cos2t)e^ty - 2(sin2t)e^ty + 2t + (t(cos2t)e^ty - 3) dy/dt...
solve the given initial value problem. y(cos2t)e^ty - 2(sin2t)e^ty + 2t + (t(cos2t)e^ty - 3) dy/dt = 0, y(0)=0
Use the Laplace transform to solve the given initial-value problem. y'' − 7y' + 12y =...
Use the Laplace transform to solve the given initial-value problem. y'' − 7y' + 12y = (t − 1), y(0) = 0, y'(0) = 1
Solve the initial value problem 9(t+1) dy dt −6y=18t, 9(t+1)dydt−6y=18t, for t>−1 t>−1 with y(0)=14. y(0)=14....
Solve the initial value problem 9(t+1) dy dt −6y=18t, 9(t+1)dydt−6y=18t, for t>−1 t>−1 with y(0)=14. y(0)=14. Find the integrating factor, u(t)= u(t)= , and then find y(t)= y(t)=
1)Consider the following initial-value problem. (x + y)2 dx + (2xy + x2 − 2) dy...
1)Consider the following initial-value problem. (x + y)2 dx + (2xy + x2 − 2) dy = 0,   y(1) = 1. Let af/ax = (x + y)2 = x2 + 2xy + y2. Integrate each term of this partial derivative with respect to x, letting h(y) be an unknown function in y. f(x, y) =   + h(y) Solve the given initial-value problem. 2) Solve the given initial-value problem. (6y + 2t − 3) dt + (8y + 6t − 1) dy...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT