Question

Let T:V→V be an endomorphism of a finite dimensional vector space over the field Z/pZ with...

Let T:V→V be an endomorphism of a finite dimensional vector space over the field Z/pZ with p elements, satisfying the equation Tp=T. Show that T is diagonalisable.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
(3) Let V be a finite dimensional vector space, and let T: V® V be a...
(3) Let V be a finite dimensional vector space, and let T: V® V be a linear transformation such that rk(T) = rk(T2). a) Show that ker(T) = ker(T2). b) Show that 0 is the only vector that lies in both the null space of T, and the range space of T
Let U and W be subspaces of a finite dimensional vector space V such that V=U⊕W....
Let U and W be subspaces of a finite dimensional vector space V such that V=U⊕W. For any x∈V write x=u+w where u∈U and w∈W. Let R:U→U and S:W→W be linear transformations and define T:V→V by Tx=Ru+Sw . Show that detT=detRdetS .
Let V be a finite-dimensional vector space and let T be a linear map in L(V,...
Let V be a finite-dimensional vector space and let T be a linear map in L(V, V ). Suppose that dim(range(T 2 )) = dim(range(T)). Prove that the range and null space of T have only the zero vector in common
Let V be a finite dimensional space over R, with a positive definite scalar product. Let...
Let V be a finite dimensional space over R, with a positive definite scalar product. Let P : V → V be a linear map such that P P = P . Assume that P T P = P P T . Show that P = P T .
Let V be a finite-dimensional vector space over C and T in L(V) be an invertible...
Let V be a finite-dimensional vector space over C and T in L(V) be an invertible operator in V. Suppose also that T=SR is the polar decomposition of T where S is the correspondIng isometry and R=(T*T)^1/2 is the unique positive square root of T*T. Prove that R is an invertible operator that committees with T, that is TR-RT.
Let V be a vector space: d) Suppose that V is finite-dimensional, and let S be...
Let V be a vector space: d) Suppose that V is finite-dimensional, and let S be a set of inner products on V that is (when viewed as a subset of B(V)) linearly independent. Prove that S must be finite e) Exhibit an infinite linearly independent set of inner products on R(x), the vector space of all polynomials with real coefficients.
Let F be the field of two elements and let V be a two dimensional vector...
Let F be the field of two elements and let V be a two dimensional vector space over F. How many vectors are there in V?How many one dimensional subspaces? How many different bases are there?
Let V be a finite dimensional vector space over R with an inner product 〈x, y〉...
Let V be a finite dimensional vector space over R with an inner product 〈x, y〉 ∈ R for x, y ∈ V . (a) (3points) Let λ∈R with λ>0. Show that 〈x,y〉′ = λ〈x,y〉, for x,y ∈ V, (b) (2 points) Let T : V → V be a linear operator, such that 〈T(x),T(y)〉 = 〈x,y〉, for all x,y ∈ V. Show that T is one-to-one. (c) (2 points) Recall that the norm of a vector x ∈ V...
let T:V to W be a linear transdormation of vector space V and W and let...
let T:V to W be a linear transdormation of vector space V and W and let B=(v1,v2,...,vn) be a basis for V. Show that if (Tv1,Tv2,...,Tvn) is linearly independent, thenT is injecfive.
5. Let V be a finite-dimension vector space and T : V → V be linear....
5. Let V be a finite-dimension vector space and T : V → V be linear. Show that V = im(T) + ker(T) if and only if im(T) ∩ ker(T) = {0}.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT