Question

Prove Cantor’s original result: for any nonempty set (whether finite or infinite), the cardinality of S is strictly less than that of its power set 2S . First show that there is a one-to-one (but not necessarily onto) map g from S to its power set. Next assume that there is a one-to-one and onto function f and show that this assumption leads to a contradiction by defining a new subset of S that cannot possibly be the image of the map f (similar to the diagonalization argument).

Answer #1

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 24 minutes ago

asked 26 minutes ago

asked 40 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago