Question

Let B = { f: ℝ  → ℝ | f is continuous } be the ring of...

Let B = { f: ℝ  → ℝ | f is continuous } be the ring of all continuous functions from the real numbers to the real numbers. Let a be any real number and define the following function:

Φa:B→R

f(x)↦f(a)

It is called the evaluation homomorphism.

(a) Prove that the evaluation homomorphism is a ring homomorphism
(b) Describe the image of the evaluation homomorphism.
(c) Describe the kernel of the evaluation homomorphism.
(d) What does the First Isomorphism Theorem for Rings say in this example?
(e) Is the kernel, K, of the evaluation homomorphism a prime ideal or a maximal ideal or both or neither?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let M = { f: ℝ  → ℝ | f is continuous } be the ring of...
Let M = { f: ℝ  → ℝ | f is continuous } be the ring of all continuous functions from the real numbers to the real numbers. Let a be any real number and define the following function: Φa:M→R f(x)↦f(a) This is called the evaluation homomorphism. 1. Describe the kernel of the evaluation homomorphism. 2. Is the kernel of the evaluation homomorphism a prime ideal or a maximal ideal or both or neither?
4. (30) Let C be the ring of complex numbers,and letf:C→C be the map defined by...
4. (30) Let C be the ring of complex numbers,and letf:C→C be the map defined by f(z) = z^3. (i) Prove that f is not a homomorphism of rings, by finding an explicit counterex- ample. (ii) Prove that f is not injective. (iii) Prove that the principal ideal I = 〈x^2 + x + 1〉 is not a prime ideal of C[x]. (iv) Determine whether or not the ring C[x]/I is a field.
If R is the ring of all real valued continuous functions defined on the closed interval...
If R is the ring of all real valued continuous functions defined on the closed interval [0,1] and if M = { f(x) belongs to R : f(1/3) = 0}. Show that M is a maximal ideal of R
) In the Extra Problem on PS 2 we defined a map φ:M2,2(Z) → M2,2(Z2) by...
) In the Extra Problem on PS 2 we defined a map φ:M2,2(Z) → M2,2(Z2) by the formula φ a b c d = a mod (2) b mod (2) c mod (2) d mod (2) On PS 2 you showed that φ is a ring homomorphism and that ker(φ) = 2a 2b 2c 2d a, b, c, d ∈ Z We know the kernel of any ring homomorphism is an ideal. Let I = ker(φ). (a) (6 points) The...
Please read the article and answear about questions. Determining the Value of the Business After you...
Please read the article and answear about questions. Determining the Value of the Business After you have completed a thorough and exacting investigation, you need to analyze all the infor- mation you have gathered. This is the time to consult with your business, financial, and legal advis- ers to arrive at an estimate of the value of the business. Outside advisers are impartial and are more likely to see the bad things about the business than are you. You should...
Please answer the following Case analysis questions 1-How is New Balance performing compared to its primary...
Please answer the following Case analysis questions 1-How is New Balance performing compared to its primary rivals? How will the acquisition of Reebok by Adidas impact the structure of the athletic shoe industry? Is this likely to be favorable or unfavorable for New Balance? 2- What issues does New Balance management need to address? 3-What recommendations would you make to New Balance Management? What does New Balance need to do to continue to be successful? Should management continue to invest...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT